Return to search

Rôle de la vapeur d'eau dans le cycle hydrologique en Arctique / The role of water vapor on the hydrologic cycle in the polar regions

La vapeur d'eau atmosphérique joue un rôle clé dans le budget radiatif en Arctique, le cycle hydrologique et donc le climat. Mais sa mesure avec une précision reste un défi. La vapeur d'eau en Arctique se caractérise par une variabilité spatiale et temporelle qui n'est pas complètement comprise. Sa colonne atmosphérique total intégrée (TCWV) est étudiée dans cette thèse. Trois méthodes de mesures de la TCWV à distance sont testées et validées pour la région polaire. Cela inclut les mesures de TCWV aux bandes NIR/VIS/IR par les capteurs MODIS, SCIAMACHY, et AIRS embarqués sur satellites. Le cycle saisonnier de la TCWV à 19 stations polaires de référence est examiné suite à l'effet de la latitude, de la longitude en plus de l'effet continental/océanique. Les mesures utilisées ont été validées aux trois stations polaires via la comparaison à une base de données référentielle de TCWV convertis de retards de signaux GPS basés au sol. Les incertitudes et limites de mesures satellitaires sont évaluées par saison et par mois. Particulièrement, nous avons étudié l’effet de la présence de nuages sur les mesures des TCWV par satellites. Dans le NIR et dans le VIS, les mesures subissent une sensibilité accrues à la présence de nuages aux latitudes hautes en été. En plus, l’estimation de l’albédo est toujours un défi aux modèles d’inversion de la TCWV, surtout en présence de neige en régions cultivées. Suite aux résultats de la validation, la distribution et les tendances saisonnières de la TCWV au-dessus de toute l'Arctique ont été évalués via MODIS. Les tendances et anomalies accrues sont discutées principalement en réponse aux changements observés en Arctique au cours des 2001-2015 années, celles qui concernent la végétation, la couverture de neige, et la glace de mer. Les tendances accrues de la TCWV peuvent être liées à l’augmentation locale de surfaces vertes relative à la neige pendant les saisons transitoires. Des tendances augmentées de la TCWV étaient observables par MODIS, forcé par le réchauffement estival local pendant les vagues de chaleurs au temps de ciels clairs. Un déclin dramatique de la glace de mer près des côtes Sibériennes et de la cote du Beaufort a entraîné une augmentation locale observée de la TCWV en début d’automne. Une phase de réchauffement au niveau de l’archipel du Svalbard, persistant en toutes saisons sauf l’été, a entrainé également des quantités supplémentaires de la TCWV. La détection et justification de tendances est une tache toujours loin d’être accomplie. Les mesures en Arctique sont toujours en question, les mesures de la TCWV au-dessus de surfaces vertes en hiver, ou à travers du ciel nuageux en été sont des défis majeurs. / Atmospheric water vapour plays a key role in the Arctic radiation budget, hydrological cycle and hence climate, but its measurement with high accuracy remains an important challenge. Arctic water vapor is characterized by a spatial and temporal variability which is not completely understood yet. Its mass integrated in the atmospheric column (TCWV) is studied in this thesis. TCWV seasonal cycle at 18 polar stations is examined following the effect of latitude, longitude in addition to the continental effect. The measurements used in this thesis were validated at three polar stations, the satellites measurements of TCWV in the NIR/VIS/IR bands by MODIS/ SCIAMACHY/ AIRS sensors are compared to those obtained from ground based GPS signals delay. Their uncertainties and limitations are evaluated in season and month scales especially their sensitivities to the clouds presence. In NIR and VIS, the measurements undergo increased sensitivity to the presence of clouds at high latitudes in summer. In addition, albedo estimation is still a challenge to their TCWV inversion models, especially where canopies are snow-covered. Following the validation results, the distribution and seasonal trends of the TCWV over the entire Arctic was assessed via MODIS. Trends and anomalies are discussed mainly in response to changes in the Arctic vegetation, snow cover, and sea ice during 2001-2015. Increased trends in TCWV may be related to local increase of vegetated areas coincidently to snow cover decrease during transient seasons. Increased trends in TCWV were observed by MODIS, forced by local summer warming from many warm waves. A dramatic decline in sea ice near the Siberian and Beaufort coasts led to an observed local increase in TCWV in early fall. A warm-up phase in the Svalbard archipelago, persisting in all seasons except summer, also resulted in additional quantities of TCWV. The detection and justification of trends is a task still far from being accomplished. Arctic TCWV measurements are in question, TCWV measurements over green areas in winter, or through cloudy skies in summer are the major challenges.

Identiferoai:union.ndltd.org:theses.fr/2017SACLV094
Date19 December 2017
CreatorsAlraddawi, Dunya
ContributorsParis Saclay, Sarkissian, Alain, Keckhut, Philippe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds