Return to search

Traitement riemannien des tenseurs pour l'IRM de diffusion et l'anatomie algorithmique du cerveau.

Les matrices symétriques et définies positives, ou tenseurs, sont aujourd'hui fréquemment utilisées en traitement et analyse des images. Leur importance a été mise à jour avec l'apparition récente de l'IRM du tenseur de diffusion (ITD) et de l'anatomie algorithmique (AA). Cependant, il est difficile de travailler avec : la contrainte de positivité doit être satisfaite à tout prix, ce qui n'est pas garanti avec les opérations matricielles standard. Dans ce travail, nous proposons deux alternatives au calcul euclidien sur les tenseurs. Au lieu de voir l'espace des tenseurs comme un espace vectoriel, nous le considérons comme une variété, i.e., un espace courbe et lisse. Grâce à la géométrie riemannienne, il est alors possible de " déplier " cet espace et de généraliser aux tenseurs toute opération avec des implémentations étonnamment simples. Dans un deuxième temps, nous passons en revue les applications de tels cadres de calcul en ITD clinique et en AA du cerveau. En ITD, nous montrons qu'il est possible de traiter de manière optimale des données très bruitées typiques d'acquisitions cliniques, et de produire des reconstructions de fibres plausibles. En AA du cerveau, nous montrons qu'en considérant des repères anatomiques simples - les lignes sulcales - il est possible de mesurer précisément la variabilité interindividuelle du cortex. Finalement, nous développons un cadre nouveau pour étudier les corrélations anatomiques entre régions du cerveau, et présentons des résultats jusqu'à maintenant inconnus de dépendances entre sillons symétriques, et entre sillons à priori non reliés, soulevant ainsi de nouvelles questions sur l'origine de telles dépendances statistiques.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00265129
Date08 February 2008
CreatorsFillard, Pierre
PublisherUniversité de Nice Sophia-Antipolis
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds