La presente investigación, dentro del contexto de la Teoría de Respuesta al Ítem (TRI), estudia un modelo multidimensional logístico compensatorio de dos parámetros (M2PL) para ítems dicotómicos. Para ello, se explican teóricamente los métodos de estimación más conocidos para los parámetros de los ítems y de los rasgos latentes de las personas, priorizando el método bayesiano mediante Cadenas de Markov de Monte Carlo (MCMC). Estos métodos de estimación se exploran mediante implementaciones computacionales con el software R y R2WinBUGS. La calidad de las respectivas estimaciones de los parámetros se analiza mediante un estudio de simulación, en el cual se comprueba que el método de estimación más robusto para el modelo propuesto es el bayesiano mediante MCMC. Finalmente, el modelo y el método de estimación elegidos se ilustran mediante una aplicación que usa un conjunto de datos sobre actitudes hacia la estadística en estudiantes de una universidad privada de Colombia. / Tesis
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:123456789/7494 |
Date | 23 November 2016 |
Creators | Malaspina Quevedo, Martín Ludgardo |
Contributors | Bazán Guzmán, Jorge Luis |
Publisher | Pontificia Universidad Católica del Perú |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | Pontificia Universidad Católica del Perú, Repositorio de Tesis - PUCP |
Rights | info:eu-repo/semantics/openAccess, Atribución-NoComercial-SinDerivadas 2.5 Perú, http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
Page generated in 0.0023 seconds