Return to search

Controllability of linear systems on non-abelian compact lie groups

In this paper, we shall deal with a linear control system ∑ defined on a Lie group G with Lie algebra L(G). We prove that, if G is a compact connected Lie group, then the vector fields associated to dynamic of ∑ are conservative, and that if G is also non-Abelian then, by using Poincare Theorem, ∑ is transitive if and only if it is controllable.

Identiferoai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:123456789/96429
Date25 September 2017
CreatorsGül, Erdal
PublisherPontificia Universidad Católica del Perú
Source SetsPontificia Universidad Católica del Perú
LanguageEspañol
Detected LanguageEnglish
TypeArtículo
FormatPDF
SourcePro Mathematica; Vol. 12, Núm. 23-24 (1998); 17-22
RightsArtículo en acceso abierto, Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/

Page generated in 0.0021 seconds