Return to search

Teoremas de Schauder y Borsuk para puntos fijos y aplicaciones

Muestra la teoría de punto fijo basado en las consideraciones de orden y completitud, resaltando la importancia de los teoremas de Knaster-Tarski y Bishop-Phelps. De igual manera la teoría de triangulación y triangulación simétrica de Sn, necesarias para demostrar las equivalencias de los teoremas de Lusternik-Schnirelmann-Borsuk, antipodal de Borsuk y Borsuk-Ulam, como consecuencia se demuestra el teorema de Borsuk y las equivalencias del teorema de punto fijo de Brouwer con los teoremas de Bohl y la retracción de Borsuk. Para finalizar, se demuestra el teorema de punto fijo de Schauder y Borsuk para cualquier espacio lineal normado que son la extensión de los teoremas de Brouwer y Borsuk respectivamente, además se presenta algunas aplicaciones como son la demostración del teorema de Peano y de Krein-Krasnosel’skñ-Milman. / Tesis

Identiferoai:union.ndltd.org:Cybertesis/oai:cybertesis.unmsm.edu.pe:cybertesis/10473
Date January 2019
CreatorsAlejandro Aguilar, Miguel Angel
ContributorsCoripaco Huarcaya, Jorge Alberto
PublisherUniversidad Nacional Mayor de San Marcos
Source SetsUniversidad Nacional Mayor de San Marcos - SISBIB PERU
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/bachelorThesis
Formatapplication/pdf
SourceUniversidad Nacional Mayor de San Marcos, Repositorio de Tesis - UNMSM
Rightsinfo:eu-repo/semantics/openAccess, https://creativecommons.org/licenses/by-nc-sa/4.0/

Page generated in 0.0019 seconds