Return to search

O teorema de Green-Tao: progressões aritméticas de tamanho arbitrariamente grande formadas por primos / The Green-Tao theorem: arbitrarily long arithmetic progressions on primes

Encontrar subestruturas aditivas que revelam um certo grau de organização em certos conjuntos contidos nos números naturais é o foco do estudo da combinatória aditiva. Desta área, resultados como os famosos Teorema de Van der Waerden e o Teorema de Szemerédi se destacam, revelando através de métodos combinatoriais que certas propriedades referentes ao tamanho de subconjuntos de inteiros implicam a existência de progressões aritméticas de tamanho arbitrariamente grande. Em meados de 1970, Furstenberg causou certa comoção no meio matemático ao publicar provas para ambos os teoremas usando métodos e ferramentas da teoria ergódica. Apesar de tal abordagem ter apresentado uma nova e profunda ligação entre as áreas, houve certa crítica pelo fato de não gerar resultados originais e por suas limitações (por exemplo, seus resultados costumam ser de caráter assintótico, sem lidar com limitantes e cotas, amplamente conhecidos pelos métodos combinatórios). Tais críticas foram silenciadas quando Ben Green e Terence Tao, usando tais métodos de teoria ergódica, demonstraram a incrível e bela afirmação de que os primos possuem progressões aritméticas de tamanho arbitrariamente grande, dando uma resposta definitiva para um enunciado conjecturado há muito tempo. Certamente, este foi um grande passo na matemática do século XXI. Deste então, novas abordagens foram amplamente estudadas e analisadas, de modo a aumentar ainda mais nossa compreensão sobre estes impressionantes conceitos. / Finding additive substructures that reveal a certain degree of organization in certain sets contained in the set of the natural numbers is the focus of the study of additive combinatorics. From this area, results such as the famous Van der Waerdens Theorem and Szemerédis Theorem stand out, revealing through combinatorial methods that certain properties concerning the size of subsets of integers imply the existence of arbitrarily long arithmetic progressions. In the mid-1970s Furstenberg caused some commotion in the mathematical world by publishing proofs for both theorems using methods and tools of ergodic theory rather than combinatorial methods. Although this approach had presented a new and deep link between those areas, there was some criticism for the lack of original results and some limitations of this technique (for instance, its results usually have an asymptotic flavour without dealing with bounds widely known by combinatorial methods). Such criticisms were silenced when Ben Green and Terence Tao, using such methods of ergodic theory, demonstrated the incredible and beautiful theorem that the primes have arithmetic progressions of arbitrarily large size, giving a definitive answer to a statement conjectured a long time ago. Certainly, this was a major step for the mathematics of the 21st century. Hence, new approaches have been extensively studied and analyzed in order to further increase our understanding of these impressive concepts.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-26082019-210327
Date27 June 2019
CreatorsCunha, Matheus Gonçalves Cassiano da
ContributorsGarcia, Manuel Valentim de Pera
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0089 seconds