Nessa dissertação provamos que se n é um inteiro par ou primo, então o Grupo de Galois de \'x POT.n\' - \'x POT.n - 1\"...- x - 1 é o grupo simétrico \'S IND.n\'. Essa família de polinômios surge naturalmente de uma generalização da sequência de Fibonacci / In this dissertation we prove that if n is even integer or a prime number, then the Galois Group of \'x POT.n\' - \'x POT. n -1\' ... - x - 1 is the symmetric group \'S IND.n\'. This polynomial family arises quite naturally from a kind of generalized Fibonacci sequence
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-20052009-163236 |
Date | 18 February 2009 |
Creators | Lima, Marcos Goulart |
Contributors | Levcovitz, Daniel |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds