In 1970, Raoul Bott published The Periodicity Theorem for the Classical Groups and Some of Its Applications, in which he uses this famous result as a guideline to present some important areas and tools of Algebraic Topology. This dissertation aims to use the path Bott presented in his article as a guideline to address certain topics on Algebraic Topology. We start this incursion developing important tools used in Homotopy Theory such as spectral sequences and Eilenberg-MacLane spaces, exploring how they can be combined to aid in computation of homotopy groups. We then study important results of Morse Theory, a tool which was in the centre of Botts proof of the Periodicity Theorem. We also develop two extensions: Morse-Bott Theory, and the applications of such results to the loopspace of a manifold. We end by giving an introduction to generalised cohomology theories and K-Theory. / Em 1970, Raoul Bott publicou o artigo The Periodicity Theorem for the Classical Groups and Some of Its Applications no qual usava esse famoso resultado como um guia para apresentar importantes áreas e ferramentas da Topologia Algébrica. O presente trabalho usa o mesmo caminho traçado por Bott em seu artigo como roteiro para explorar tópicos importantes da Topologia Algébrica. Começamos esta incursão desenvolvendo ferramentas importantes da Teoria de Homotopia como sequências espectrais e espaços de Eilenberg-MacLane, explorando como estes podem ser combinados para auxiliar em cálculos de grupos de homotopia. Passamos então a estudar resultados importantes de Teoria de Morse, uma ferramenta que estava no centro da demonstração de Bott do Teorema da Periodicidade. Desenvolvemos ainda, duas extensões: Teoria de Morse-Bott e aplicações destes resultados ao espaço de laços de uma variedade. Terminamos com uma introdução a teorias de cohomologia generalizadas e K-Teoria.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17112017-130250 |
Date | 23 August 2017 |
Creators | Bonatto, Luciana Basualdo |
Contributors | Struchiner, Ivan |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds