The power of generative deep learning has increased very quickly in the past ten years and modern models are now able to generate human faces that are indistinguishable from real ones. This thesis project will investigate the uses and limitations of this technology by attempting to generate very specific data, images of golf holes. Generative adverserial networks, GANs, were used to solve this problem. Two different GAN models were chosen as candidates and these were trained on some different datasets that were extracted from the project provider Topgolf Sweden AB’s virtual golf game. This golf game contained data of many different types of golf holes from all over the world. The best performing model was Progressive Growing GAN, ProGAN, which works by iteratively increasing the size of the images until the desired size is reached. This model was able to produce results of very high quality and with large variety. To further investigate the quality of the results a survey was sent out to the employees of Topgolf Sweden AB. A survey that showed that it was difficult for the participants to correctly determine if a given image was real or had been generated by the model. These results further showed that the generated samples had a high quality. This thesis project also investigated how height data could be incorporated in the process. The results showed that the ProGAN model was able to generate height maps that capture the most important aspects of a golf hole. Furthermore, the overall results showed that the generative model had learned a good representation of the data’s underlying probability distribution. More work needs to be done before a model like the one presented here can be used to generate complete golf holes that can be used in a virtual golf game, but this project clearly shows that GANs are a worthwhile investment for this purpose. / Kraften i generativ djupinlärning har ökat snabbt under de senaste tio åren och moderna modeller kan generera bilder på människoansikten som är omöjliga att urskilja från riktiga ansikten. Detta examensarbete undersöker hur denna teknologi kan användas och vad det finns för begränsningar genom att försöka generera väldigt specifik data, bilder på golfhål. Generativa adversiella nätverk, GANs, användas för att lösa detta problem. Två modeller valdes som kandidater och dessa tränades på olika datasets som hade extraherats från projektleverantören Topgolf Sweden ABs virtuella golfspel. Detta golfspel innehöll data från en mängd olika typer av golfhål från hela världen. Modellen som presterade bäst var Progressive Growing GAN, ProGAN, som iterativt ökar storleken på bilderna tills den önskade storleken har nåtts. Denna modell lyckades skapa bilder av väldigt hög kvalitet och med stor variation. För att ytterligare undersöka kvaliten på resultaten så genomfördes en enkät. Enkäten skickades till anställda hos Topgolf Sweden AB. Svaren visade att det var svårt för deltagarna att urskilja äkta bilder från genererade bilder vilket ytterligare visade att de genererade bilderna hade hög kvalitet. Detta examensarbete undersökte också hur höjddata kunde integreras i processen. Resultaten av detta visade att ProGAN modellen kunde generera höjddata som innehöll de viktigaste delarna av ett golfhål. Dessutom så visade resultaten i helhet att den generativa modellen hade lärt sig en bra representation av träningsdatans underliggande sannolikhetsfördelning. Mer arbete krävs för att en liknande modell ska kunna generera kompletta golfhål som kan användas i ett virtuellt golfspel, men projektet visar att GANs är ett väldigt bra alternativ för att lyckas med det.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321431 |
Date | January 2022 |
Creators | Lundqvist, Carl |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:589 |
Page generated in 0.0765 seconds