Cette thèse est consacrée à l'amélioration de l'estimation d'une fonction ou signal f, par le biais d'une approche voisine à l'approche minimax. Cette démarche est motivée par la construction de régions de confiance, pour f, plus fines que celle obtenues via l'approche d'estimation dans le cadre minimax. En effet, nous nous intéressons ici à estimer des fonctions de plusieurs variables (on notera d leur nombre) pouvant être intégrées en pratique dans des modèles économiques, biologiques et autres domaines pouvant mettre en jeu un nombre conséquent de critères quantitatifs. De manière générale et contrairement au problème paramétrique, lorsque la valeur du paramètre d est grande, l'efficacité des résultats minimax s'en ressent. Ce phénomène est connu au sein de la communauté statistique sous le nom de "malédiction de la dimension" (curse of dimensionality).<br /><br />Afin de ne pas pénaliser l'estimation en grande dimension ou de manière générale dans des modèles où l'approche minimax n'est pas satisfaisante (sur des espaces fonctionnels trop massifs), Lepski a developpé une approche alternative. Celle-ci se base sur l'idée simple d'adapter la méthode d'estimation en fonction des résultats de tests d'hypothèses 'accélératrices'. Cette démarche utilise des résultats issus de la théorie des tests afin d'envisager une estimation adaptative. Elle va nous amener à introduire le concept de risque avec normalisation aléatoire. Ainsi nous nous consacrerons par la suite à résoudre deux types de problèmes statistiques fortement reliés
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00348271 |
Date | 03 July 2008 |
Creators | Chiabrando, Fabien |
Publisher | Université de Provence - Aix-Marseille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds