Return to search

Investigation of similarity-based test case selection for specification-based regression testing.

Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-04-10T20:00:05Z
No. of bitstreams: 1
FRANCISCO GOMES DE OLIVEIRA NETO - TESE PPGCC 2014..pdf: 5163454 bytes, checksum: 228c1fc4f2dc9aad01698011238cfde1 (MD5) / Made available in DSpace on 2018-04-10T20:00:05Z (GMT). No. of bitstreams: 1
FRANCISCO GOMES DE OLIVEIRA NETO - TESE PPGCC 2014..pdf: 5163454 bytes, checksum: 228c1fc4f2dc9aad01698011238cfde1 (MD5)
Previous issue date: 2014-07-30 / uring software maintenance, several modifications can be performed in a specification
model in order to satisfy new requirements. Perform regression testing on modified software is known to be a costly and laborious task. Test case selection, test case prioritization, test suite minimisation,among other methods,aim to reduce these costs by selecting or prioritizing a subset of test cases so that less time, effort and thus money are involved in performing regression testing. In this doctorate research, we explore the general problem of automatically selecting test cases in a model-based testing (MBT) process where specification models were modified. Our technique, named Similarity Approach for Regression Testing (SART), selects subset of test cases traversing modified regions of a software system’s specification model. That strategy relies on similarity-based test case selection where similarities between test cases from different software versions are analysed to identify modified elements in a model. In addition, we propose an evaluation approach named Search Based Model Generation for Technology Evaluation (SBMTE) that is based on stochastic model generation and search-based techniques to generate large samples of realistic models to allow experiments with model-based techniques. Based on SBMTE,researchers are able to develop model generator
tools to create a space of models based on statistics from real industrial models, and
eventually generate samples from that space in order to perform experiments. Here we developed a generator to create instances of Annotated Labelled Transitions Systems (ALTS), to be used as input for our MBT process and then perform an experiment with SART.In this experiment, we were able to conclude that SART’s percentage of test suite size reduction is robust and able to select a sub set with an average of 92% less test cases, while ensuring coverage of all model modification and revealing defects linked to model modifications. Both SART and our experiment are executable through the LTS-BT tool, enabling researchers to use our selections trategy andr eproduce our experiment. / During software maintenance, several modifications can be performed in a specification model in order to satisfy new requirements. Perform regression testing on modified software is known to be a costly and laborious task. Test case selection, test case prioritization, test suite minimisation,among other methods,aim to reduce these costs by selecting or prioritizing a subset of test cases so that less time, effort and thus money are involved in performing regression testing. In this doctorate research, we explore the general problem of automatically selecting test cases in a model-based testing (MBT) process where specification models were modified. Our technique, named Similarity Approach for Regression Testing (SART), selects subset of test cases traversing modified regions of a software system’s specification model. That strategy relies on similarity-based test case selection where similarities between test cases from different software versions are analysed to identify modified elements in a model. In addition, we propose an evaluation approach named Search Based Model Generation for Technology Evaluation (SBMTE) that is based on stochastic model generation and search-based techniques to generate large samples of realistic models to allow experiments with model-based techniques. Based on SBMTE,researchers are able to develop model generator
tools to create a space of models based on statistics from real industrial models, and
eventually generate samples from that space in order to perform experiments. Here we developed a generator to create instances of Annotated Labelled Transitions Systems (ALTS), to be used as input for our MBT process and then perform an experiment with SART.In this experiment, we were able to conclude that SART’s percentage of test suite size reduction is robust and able to select a sub set with an average of 92% less test cases, while ensuring coverage of all model modification and revealing defects linked to model modifications. Both SART and our experiment are executable through the LTS-BT tool, enabling researchers to use our selections trategy andr eproduce our experiment.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:riufcg/360
Date10 April 2018
CreatorsOLIVEIRA NETO, Francisco Gomes de.
ContributorsMACHADO, Patrícia Duarte de Lima., CARTAXO, Emanuela Gadelha., ARANHA, Eduardo Henrique da Silva., MASSONI, Tiago Lima., SIMÃO, Adenildo da Silva.
PublisherUniversidade Federal de Campina Grande, PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO, UFCG, Brasil, Centro de Engenharia Elétrica e Informática - CEEI
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca de Teses e Dissertações da UFCG, instname:Universidade Federal de Campina Grande, instacron:UFCG
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds