The thesis entitled “Chemistry of Tetrathiomolybdate and Tetraselenotungstate: Studies on Aziridine and Epoxide Ring Opening Reactions” is divided into five chapters.
(For Formulas and Equations Refer PDF File)
Chapter 1: Part 1: Synthesis of β-Sulfonamidodisulfides and β-Sulfonamidosulfides using Benzyltriethylammonium Tetrathiomolybdate
In this chapter, a comprehensive study of general and effective one step procedure for the synthesis of β-sulfonamidodisulfides directly from optically pure N-tosyl aziridines using benzyltriethylammonium tetrathiomolybdate [BnEt3N]2MoS4 as sulfur transfer reagent in a regio manner under neutral conditions without the use of any Lewis acid or base has been reported. Additionally, we have demonstrated regio- and stereospecific ring opening of di- and trisubstituted aziridines using [BnEt3N]2MoS4 to synthesize substituted β-sulfonamidodisulfides in good yields.
This methodology is extended to the synthesis of an optically pure unnatural amino acid with the disulfide bridge and a cyclic seven membered disulfide.
Synthesis of a variety of β-sulfonamidosulfides involving cleavage of disulfide bonds assisted by tetrathiomolybdate and the use of masked thiolate for the synthesis of β-sulfonamidosulfides involving multi-step reactions in a one pot is also demonstrated.
Chapter 1: Part 2: Synthesis of β-Sulfonamidodiselenides using Tetraethylammonium Tetraselenotungstate
In this chapter, we report the results of regio- and stereospecific, nucleophilic ring opening of chirally pure N-tosyl aziridines with tetraethylammonium tetraselenotungstate [Et4N]2WSe4 as selenium transfer reagent to afford a number of β- sulfonamidodiselenides in good yields.
Using this methodology, carbohydrate derived β- sulfonamidodiselenides from the corresponding carbohydrate derived aziridines have been synthesized. These enantiopure diselenide derivatives have the potential to be used as chiral ligands in diethyl zinc addition to aldehydes.
Chapter 2: Ring Opening of Aziridine/Epoxide, Disulfide Formation, Reduction of Disulfide Bond and Michael Reaction
In this chapter, we report a systematic study of tetrathiomolybdate mediated tandem regio- and stereospecific ring opening of aziridines, disulfide formation, in situ reduction of disulfide bond followed by Michael reaction in an one pot operation to give a variety of β-sulfonamidosulfides in good yields. The main advantage of this methodology is that four reactions involving three components take place in a one-pot operation.
Chapter 3: Part 1: New Thia-aza Payne type Rearrangement Mediated by Benzyltriethylammonium Tetrathiomolybdate
In this chapter, reaction of aziridinemethanol sulfonate esters with tetrathiomolybdate to give thiirane derivatives as the major product and cyclic disulfides as minor product under mild reaction conditions via an unprecedented thia-aza-Payne type rearrangement have been presented.
Interestingly, when the reaction of tetrathiomolybdate was carried out with 2-aziridino-cyclohexanol derivatives it resulted in the formation of thia-bicyclo[3.1.1]heptane or dithia-bicyclo[3.2.1]octane derivatives.
Chapter 3: Part 2: New selena-aza Payne Type Rearrangement Mediated by Tetraethylammonium Tetraselenotungstate
In this chapter, reaction of tetraselenotungstate with simple N-tosyl aziridinemethanol tosylates to give allyl amine derivatives as the only product via an unprecedented selena-aza-Payne type rearrangement is discussed. When the methodology is extended to disubstituted N-tosyl aziridinemethanol tosylates, regio- and stereospecific ring opening of aziridines occurs to afford allyl amine derivatives as the major products and cyclic five membered diselenides as the minor products in good yields.
Chapter 3: Part 3: Synthesis of Sulfur and Selenium Heterocycles by Azirdine Ring Opening followed by Cyclization
In this chapter, studies on the synthesis of sulfur and selenium-heterocycles by aziridine ring opening followed by cyclization of N-tosyl aziridino-ethanol tosylates using tetrathiomolybdate as a sulfur transfer reagent and tetraselenotungstate as a selenium transfer reagent respectively are presented.
Chapter 4: Tetrathiomolybdate Mediated Ring Opening of bis-Aziridines, bis-Epoxides and Aziridino-epoxides
In this chapter, studies on the synthesis and ring opening of bis-aziridines, bis-epoxides and aziridino-epoxides with tetrathiomolybdate as the sulfur transfer reagent are presented. This has resulted in the synthesis of optically active sulfur heterocycles ranging from three membered to eight membered ring systems with excellent stereo and regio- control in good yields.
Chapter 5: Part 1: Synthesis of Conformationally Locked, Bridged, Bicyclic Mono and Disulfides
In this chapter, work related to the synthesis of conformationally locked bridged bicyclic disulfides and sulfides from cis-aziridino-epoxides by ring opening of both aziridines and epoxides in a tandem fashion using tetrathiomolybdate as a sulfur transfer reagent has been discussed.
Comparative studies on the behavior of conformationally locked disulfides which has the dihedral angle close to zero (φ = 0) with disulfides having larger dihedral angles (φ>90) have been presented in this chapter. Some correlations have been made on the physicochemical characteristics of the disulfides with change in the dihedral angles.
Chapter 5: Part 2: Synthesis of Conformationally Locked, Bridged, Bicyclic Diselenides
In this chapter, work related to the development of a general synthetic methodology for the synthesis of conformationally locked, bridged diselena-bicyclo[3.2.1]octane skeleton by regio- and stereospecific, tandem nucleophilic ring opening of cis-1,4-aziridino-epoxides with tetraselenotungstate in one-pot are presented.
To compare the behavior of conformationally locked diselenides which has the dihedral angle close to zero (φ = 0) with diselenides having larger dihedral angles (φ > 90), we have synthesized the acyclic diselenide (see chapter 1.2) and cyclic diselenide by regio- and stereospecific ring opening of simple aziridine and bis-aziridine respectively with tetraselenotungstate. Some correlations have been made on the physicochemical characteristics of the diselenides with change in the dihedral angles.
Identifer | oai:union.ndltd.org:IISc/oai:etd.ncsi.iisc.ernet.in:2005/643 |
Date | 08 1900 |
Creators | Sureshkumar, D |
Contributors | Chandrasekaran, S |
Source Sets | India Institute of Science |
Language | en_US |
Detected Language | English |
Type | Thesis |
Relation | G21693 |
Page generated in 0.0025 seconds