• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemistry Of Tetrathiomolybdate : Application In Organic Synthesis

Baig, Nasir Baig Rashid 07 1900 (has links)
The thesis entitled “Chemistry of Tetrathiomolybdate: Applications in Organic Synthesis” is divided in to six chapters Chapter 1: Synthesis of -amino disulfides, cystines and their direct incorporation into peptides mediated by tetrathiomolybdate In this chapter, we report a simple method for direct access to β-amino disulfides by regioselective ring opening of sulfamidates with benzyltriethylammonium tetrathiomolybdate [BnEt3N]2MoS4. The versatility of this reaction has been shown by preparing a number of β-amino disulfides having different N-protecting groups and the stability of these protecting groups under the reaction conditions has been evaluated. This methodology is also extended to the synthesis and direct incorporation cystine and 3, 3′-dimethyl cystine derivatives into peptides. Chapter 2: Unusual reactivity of tetrathiomolybdate: A new entry to the synthesis of b-aminothiols In this chapter, we disclose a simple and highly efficient method for the synthesis of β and γ-amino thiols via regioselective ring opening of sulfamidates with tetrathiomolybdate 1. The scope and generality of this methodology has been exemplified by synthesizing a carbohydrate derived β-aminothiol. This methodology has also been extended to the synthesis of isocysteine derivatives in optically pure form. Chapter 3: Part 1: Synthesis of β-aminodiselenides via sequential one-pot, multistep reactions mediated by tetrathiomolybdate In this chapter, we have demonstrated that a variety of N-alkyl-β-aminodiselenides can be synthesized in high yield from appropriate sulfamidates under mild reaction conditions using potassium selenocyanate and tetrathiomolybdate [BnEt3N]2MoS4 via a sequential one-pot multistep process. The compatibility of different protecting groups under the reaction conditions has been discussed. Chapter: 3 Part 2: Synthesis of unnatural seleno amino acids and their direct incorporation into peptides In this chapter, we have demonstrated the first and general method for the synthesis of selenocystine, 3, 3'-dialkylselenocystine, isoselenocystine and their direct incorporation into peptides using a one-pot multistep reaction strategy mediated by tetrathiomolybdate. Chapter 4: Synthesis and functionalization of cysteine, selenocysteine and their derivatives via the formation of unsymmetrical disulfide and sulfur-selenium bond. In this chapter, we present a novel one-pot multi component strategy for the synthesis and functionalization of cysteine, selenocysteine and their derivatives via unsymmetrical disulfides and sulfur-selenium bond formation. Chapter 5: Part 1: A novel method for the synthesis of thioacetates employing benzyltriethylammonium tetrathiomolybdate and acetic anhydride In this chapter, we report a simple and efficient methodology for the synthesis of thioacetates using benzyltriethylammonium tetrathiomolybdate [BnEt3N]2MoS4 and acetic anhydride as the key reagents, starting from alkyl halides in a multi step, tandem reaction process. The application of this methodology for the synthesis of orthogonally protected cysteine derivatives and anomeric β-thioglycosides has also been demonstrated. Chapter 5: Part 2: One-pot synthesis of β-aminothioacetates using benzyltriethyl-ammonium tetrathiomolybdate and acetic anhydride. In this chapter, we have demonstrated a simple and efficient method for the synthesis of β-amino thioacetates and pseudo thioinositol derivatives, via ring opening of aziridines and aziridino epoxides using tetrathiomolybdate 1 and acetic anhydride as key reagents. Chapter 6: Simple and efficient synthesis of allo and threo-3, 3'-dimethylcystine derivatives in optically pure form In this chapter, we have presented a simple and efficient methodology for the synthesis of allo-3,3'-dimethylcystine and threo-3,3'-dimethylcystine derivatives in optically pure form using L-threonine as the chiral pool and benzyltriethylammonium tetrathiomolybdate 1 as the key reagent. (For structural formula pl see the pdf file)
2

Novel Strategies Towards Condenced Triazoles, Ferrocene Aminoacids, Conjugates And Selenosulfides

Sudhir, V Sai 11 1900 (has links)
Chapter 1: Facile entry into triazole fused tetrahydropyrazinones from amines and amino acids. In this chapter, A practical and high yielding regioselective synthesis of several new, enantiopure 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyrazin-6-ones is described starting from primary amines in a three step reaction sequence (alkylation, acylation, one-pot displacement with azide followed by cycloaddition) employing constrained intramolecular ‘click’ reaction as the key step. The method obviates chromatographic purification of products. This methodology was also extended to the synthesis of diverse triazole fused tetrahydropyrazinones derived from amino acids. The scope of this methodology was extended by varying the alkyl as well as acyl components which furnished other triazole fused novel heterocycles. Chapter 2: Facile entry into triazole fused heterocycles via sulfamidate derived azido-alkynes. Direct synthesis of condensed triazoles from diverse sulfamidates by ring opening of sulfamidates with sodium azide followed by one-pot propargylation and cycloaddtion furnished title compounds. The methodogy in general has been demonstrated on diverse sulfamidates derived from amino acids, amino acid derivatives to obtain a variety of triazole fused scaffolds. In one example, a condensed triazole containing amino acid has been synthesized by ring opening of a sulfamidate derivative with propargyl amine. This methodology has also been extended to the synthesis of condensed triazoles derived from D-glucose. Chapter 3: ‘Click Chemistry’ Inspired Synthesis of Novel Ferrocene-Amino acid, Peptide Conjugates. In this chapter synthesis of a wide range of ferrocene-amino acid and peptide conjugates in excellent yield is presented. Conjugation is established via copper catalyzed Huisgen 1,3-dipolar cycloaddition. Two complementary strategies were employed for conjugation, one involving cycloaddition of amino acid derived azides with ethynyl ferrocene and the other involving cycloaddition between amino acid derived alkynes with ferrocene derived azides. Labeling of amino acids at multiple sites with ferrocene is discussed. A new route to 1, 1’ unsymmetrically substituted ferrocene conjugates is reported. A novel ferrocenophane is accessed via bimolecular condensation of amino acid derived bis alkyne with azide. The electrochemical behavior of a few selected ferrocene conjugates has been studied by cyclic voltammetry. Chapter 4: Click Chemistry inspired Synthesis of Ferrocene Amino acids and other derivatives. This work reports the synthesis of a wide range of ferrocenyl-amino acids and other derivatives in excellent yield. Diverse amino acid containing azides were synthesized and ligated to ferrocene employing click reaction to access ferrocenyl amino acids. Chiral alcohols, esters, diols amines containing azido group were tagged to ferrocene via click reaction to generateferrocene derived chiral derivatives. A novel strategy for direct incorporation of ferrocene into a peptide and a new route to 1, 1’ disubstituted ferrocene amino acid derivative are reported. Synthesis of mono and disubstituted ferrocene derivatives employing ferrocene derived azides is also described. Chapter 5: Convenient synthesis of Ferrocene Conjugates mediated by Benzyltriethylammonium Tetrathiomolybdate in a multi-step tandem process. The synthesis of a wide range of ferrocene derived sulfur linked mono and disubstituted Michael adducts and conjugates mediated by benzyltriethylammonium tetrathiomolybdate in a tandem process is reported. New route to access acryloyl ferrocene and 1,1’-bis acryloyl ferrocene is discussed. Conjugation of amino acids to ferrocene is established via their Nand Ctermini and also via side chain employing conjugate addition as key step to furnish monovalent and divalent conjugates. This methodology has also been extended to access several ferrocene carbohydrate conjugates. The electrochemical behavior of a few selected ferrocene conjugates has been studied by cyclic voltammetry. Finally, 1,1’-bis acryloyl ruthenocene was synthesized and it was utilized for the preparation of ruthenocene-carbohydrate conjugate in good yield. Chapter 6: Formation of Intramolecular S-Se bond mediated by tetrathiomolybdate. In this chapter, we have disclosed our preliminary results on reactivity of tetrathiomolybdate towards compounds containing both thiocyanate and selenocyanate functionalities. Several such compounds have been synthesized from the corresponding dibromides in two steps. We have observed selective reductive dimerization of selenocyanate over thiocyanate. In all the cases we also obtained seleno-sulfides via disulfide diselenide exchange reaction upon addition of excess tetrathiomolybdate. In the case of substrates on benzene scaffold, disulfide and diselenide bridged macrocycles were obtained apart from seleno sulfides whereas in the case of ferrocene derived substrates, formation of macrocycles was not observed. A tentative mechanism for the formation of these novel seleno sulfides is also discussed.(For structural formula pl see the pdf file)
3

Development Of Novel Methods For The Synthesis Of Amines, Amino Acids And Peptides

Bhat, Ramakrishna G 06 1900 (has links) (PDF)
No description available.
4

Synthesis Of Novel Chalcogenides Using Acyloxyphosphonium Intermediates And Doubly Activated Cyclopropanes

Gopinath, P 11 1900 (has links) (PDF)
The thesis entitled "Synthesis of Novel Chalcogenides using Acyloxyphosphonium Intermediates and Doubly Activated Cyclopropanes" is divided into six chapters. Chapter 1: Part 1: Synthesis of thioesters from carboxylic acids and alkyl halides using benzyltriethylammonium tetrathiomolybdate In this chapter, we describe the synthesis of thioesters from carboxylic acids and alkyl halides. Aryl carboxylic acids are first activated using PPh3 and NBS to form the corresponding acyloxy phosphonium intermediates which then on further reaction with reagent, 1generate thioaroylate ions in situ. These thioaroylates on further reaction with various electrophiles such as alkyl halides / dihalides in the same pot gives the corresponding functionalized thioesters. This methodology was then extended to carbohydrate based thioesters as they are important synthetic intermediates in various transformations and also they could be deprotected later to synthetically more valuable thiols. For this study, we took 1,2,3,4tetra-O-acetyl-β-D-glucopyranuronic acid which on treatment with PPh3,NBS, reagent, 1 and I-bromo propane (CHCl3, 28°C, 2h) afforded the corresponding thioester in 55% yield. An intramolecular version of the reaction was then performed on a compound containing both anomeric bromide and carboxylic acid functionality. This was achieved by treating tetra acetyl glucuronic acid, with HBr/AcOH to form α-D-bromo-glucopyranuronic acid which on further treatment with PPh3, NBS and reagent, 1 gave the corresponding bicyclic thiolactone in 55% yield. Chapter 1: Part 2: Synthesis of Thioesters by Simultaneous Activation of Carboxylic Acids and Alcohols using PPh3/NBS In this chapter, we have shown the synthesis of thioester from carboxylic acids and alcohols. Both carboxylic acids and alcohols are first activated using PPh3 and NBS to form the corresponding phosphonium salts. Reagent, 1 then reacts selectively with acyloxyphosphonium intermediates to generate thioaroylate ions in situ which then react either with alkoxy phosphonium salts or the corresponding alkyl bromide to give thioesters in good yield. The same methodology was then used for a one pot conversion of N-Boc serine ester to s-protected cysteine using reagent 1 as the key sulfur transfer reagent. Chapter 2: Part 1: Tetrathiomolybdate mediated Michael addition of thioaroylates generated from acyloxyphosphonium salts In this chapter, we have reported an easy and alternative protocol for the Michael addition of thioacids to various Michael acceptors. Acyloxyphosphonium salts and tetrathiomolybdate reacts to generate thioaroylate ions which then undergo Michael additionto givethe corresponding Michael adducts. This methodology was then extended for the synthesis carbohydrate based thiolactone by an intramolecular Michael addition reaction to show the applicability of the methodology. Chapter 2: Part 2: Regioselective and chemoselective ring opening of aziridines and epoxides using thioaroylate ions In this chapter, we have demonstrated nucleophilic ring opening of Aziridines and epoxides using thioaroylate ions generated from acyloxyphosphonium salts and tetrathiomolybdate as a sulfur transfer reagent. We have also demonstrated chemoselective ring opening of azirdines in the presence of an epoxide and tosylate to show the novelty of our method. Chapter 3: Synthesis of bromo esters and bromo thioesters by ring opening of cyclic ethers and thiiranes via acyloxyphosphonium intermediates In this chapter, we report the synthesis of bromo esters and thioesters by the ring opening of epoxides, tetrahydrofuran, and thiiranes with bromide ion to form the corresponding bromo alcohols and thiols followed by the nucleophilic displacement of triphenylphosphine oxide from acyloxyphosphonium salts. At first THF and epoxides were subjected for the ring opening reactions to give the corresponding bromo esters. The methodology was then extended to thiiranes to synthesis bromo thioesters in good to moderate yield. Chapter 4: Synthesis of doubly activated cyclopropranes and their applications to the synthesis of dihydrothiophenes and thiophenes In this chapter we discuss the synthesis and ring opening of doubly activated cyc1opropanes using tetrathiomolybdate and their applications towards the formation of dihydrothiophenes and other bioactive molecules. At first, we synthesized a number of doubly activated cyc1opropanes from dimethyl-α-arylsulfonium bromide,24 a protocol developed by Chow and others. With the doubly activated cyclopropanes in hand, we then attempted the ring opening of cyclopropanes containing a cyano group with tetrathiomolybdate to give the corresponding dihydrothiophene derivatives. Also we have used our methodology for the synthesis of HIV-1 reverse transcriptase inhibitor Chapter 5: Synthesis of unsymmetrical sulfide and disulfide derivatives via ring opening of doubly activated cyclopropanes Here, we describe the synthesis of various monosulfides and mixed disulfides by doubly activated cyclopropane ring opening mediated by tetrathiomolybdate in one pot. Tetrathiomolybdate is known for the reduction of disulfides while diaryl disulfides gives monosulfide, dialkyl disulfides give mixed disulfides with the corresponding doubly activated cyclopropane. Thus diaryl disulfide cleaves readily as the resultant thiolate ion is stable and opens the cyclopropane ring to give a monosulfide. Dibenzyl disulfide on the other hand being less reactive gave a mixed disulfide instead of a monosulfide. We also extended this ring opening reactions for the synthesis of symmetrical disulfides Using tetrathiomolybdate as the key sulfur transfer reagent. Chapter 6: A mild protocol for the nucleophilic ring opening of doubly activated cyclopropanes using selenolates generated in situ Nucleophilic ring opening of doubly activated cyc1opropanes with selenolate ions generated by the reduction of diselenides using NaB14 is discussed in this part of the work. A variety of doubly activated cyc1opropanes have been tested for this reaction giving the corresponding selenium compounds in good yield. This methodology was then extended to other diselenides using nitroester cyclopropane as standard and also to other substituted nitroester cyclopropanes using diphenyl diselenide as standard. This methodology was also then extended to the synthesis of homoselenocysteines by the reduction of nitro group using Sn/HCI for the reduction. (For structural formula pl refer the hard copy)
5

Synthesis and Application of Polymer Stabilized, Water Dispersible Copper Based Nanoparticles as Anti-cancer and Diagnostic Agents

YARABARLA, SRIRAMAKRISHNA 24 April 2017 (has links)
No description available.
6

One-Pot Synthesis Of Chiral Disulfides & Diselenides From α-Amino Acids Mediated By Ammonium Tetrathiomolybdate In Water

Navin, V 05 1900 (has links)
We have described herein a convenient one-pot synthesis of lisulfides/diselenides from a-amino acids mediated by ammonium etrathiomolybdate in water. (Figure 1) (Figure) Figure 1 Transformation of α-amino acids into the corresponding tiiocyanates/selenocyanates/disulfides/diselenides Halo-de-amination of a-amino acids using HBr/NaNCte followed by treatment with ammonium tetrathiomolybdate (NH4)2]VloS4 jLb provided a general route for the the one-pot synthesis of chiral a,a' bis (dithio) carboxylic acids (Figure 1, 2b). The yields were moderate, limited mainly the moderate conversion of a-amino acids into the corresponding chiral a-bromides. It was possible to synthesize the 2-thiocyanto carboxylic acids from the corresponding a-amino acids by a similar strategy. Thus diazotization in the presence of KSCN yielded in the chiral 2-thiocyanto carboxylic acids in moderate yields (Figure 1, 3). Thiocyanato-de-amination thus afforded the thiocyanates which when treated with JJD provided the chiral disulfides (Figure 1, 4a). We could thus synthesize both enantiomers of the disulfide from a single enantiomer of the starting a-amino acid. (Figure 1, 4a,4b) Using a similar strategy we have also demonstrated an efficient method for the synthesis of chiral selenocyanates starting from a-amino acids, using selenocyanate anion as the nucleophile (Figure 1, 5). It is possible to demonstrate a one-pot synthesis of chiral diselenides by reductive coupling of selenocyanates using JJb. (Figure 1, 6) (for figure see the pdf file)
7

Chemistry Of Thio And Seleno Metallates In Organic Synthesis

Saravanan, V 06 1900 (has links)
Thio metallates are known for many years for their utility in many processes. They have been established as versatile reagents in organic synthesis. However the heavier metal chalcogenides, though known for many years, have been ignored for a long time. In this thesis the results of the development of tetraethylammonium tetraselenotungstate [EttN]2Wse4 1 as a new class of selenium transfer reagent have been described. The thesis also deals with the chemistry of benzyltriethylammonium tetrathiomolybdate, [BnEt3N]2MoS4,2 in the synthesis of diselenides and thio esters. The thesis entitled "Chemistry of Thio and Seleno Metallates in Organic Synthesis" is divided into four Chapters. Chapter 1 In this chapter a detailed studies of alkylation of tetraethylammonium tetraselenotungstate (EuN)2WSe4,1 with a variety of alkyl halides, benzylic halides and acyl halides to yield the corresponding diselenides in excellent yields are described. (structural Formula) Scheme 1 Various carbohydrate-derived diselenides were also prepared by treating the sugar bromides with tetraethylammonium tetraselenotungstate 1 (Scheme 2). An attempt was made to synthesize seleno lactones from co- bromo acyl halides. This reaction mainly furnished the corresponding diacyl diselenides (Scheme 3). The reaction of 1 with aryldiazonium tetrafluoroborates led to the formation of corresponding diselenides or mono selenides depending on the substitution on the aromatic ring (Scheme 4). (structural formula) Scheme 2 (structural formula) Scheme 3 (structural formula) Scheme 4 Chapter 2 In this chapter a general methodology for the formation of the diselenide bond has been extended to the synthesis of a number of redox- switched crown ethers of various ring size using the reagents tetraethylammonium tetraselenotungstate (Et4N)2WSe4 t 1 and benzyltriethylammonium tetrathiomolybdate, [BnEt3NJ2MoS4,2 (Scheme 5). (structural formula) Scheme 5 The association constants for the binding of silver and potassium ions with the diselena crown ethers were determined. This methodology is very useful for obtaining selenacrown ethers under very mild conditions and also without using high dilution conditions. Chapter 3 In this chapter a general methodology for the facile conversion of amides and lactams to the corresponding seleno amides and selenolactams is described. A number of amides and lactams were converted into their selenocarbonyl derivatives in excellent yield via the formation of Vilsmeier intermediates followed by treatment with tetraethylammonium tetraselenotungstate (EuN^WSe4,1 (Scheme .6). (structural formula( Scheme 6 Chapter 4 In this chapter, a general method for the synthesis of thioesters is described. The reaction of p- nitrophenyl esters and disulfides with benzyltriethylammonium tetrathiomolybdate (PhCH2NEt3)2MoS4,2 furnished the corresponding thio esters in good yield (Scheme (7). The intramolecular version of this reaction furnished dimeric thiolactones as the major product (Scheme 8) (structural formula) Scheme 7 (structural formula) Scheme 8 (for structural formula pl see the original document)
8

Chemistry Of Tetrathiomolybdate And Tetraselenotungstate : Studies On Aziridine And Epoxide Ring Opening Reactions

Sureshkumar, D 08 1900 (has links)
The thesis entitled “Chemistry of Tetrathiomolybdate and Tetraselenotungstate: Studies on Aziridine and Epoxide Ring Opening Reactions” is divided into five chapters. (For Formulas and Equations Refer PDF File) Chapter 1: Part 1: Synthesis of β-Sulfonamidodisulfides and β-Sulfonamidosulfides using Benzyltriethylammonium Tetrathiomolybdate In this chapter, a comprehensive study of general and effective one step procedure for the synthesis of β-sulfonamidodisulfides directly from optically pure N-tosyl aziridines using benzyltriethylammonium tetrathiomolybdate [BnEt3N]2MoS4 as sulfur transfer reagent in a regio manner under neutral conditions without the use of any Lewis acid or base has been reported. Additionally, we have demonstrated regio- and stereospecific ring opening of di- and trisubstituted aziridines using [BnEt3N]2MoS4 to synthesize substituted β-sulfonamidodisulfides in good yields. This methodology is extended to the synthesis of an optically pure unnatural amino acid with the disulfide bridge and a cyclic seven membered disulfide. Synthesis of a variety of β-sulfonamidosulfides involving cleavage of disulfide bonds assisted by tetrathiomolybdate and the use of masked thiolate for the synthesis of β-sulfonamidosulfides involving multi-step reactions in a one pot is also demonstrated. Chapter 1: Part 2: Synthesis of β-Sulfonamidodiselenides using Tetraethylammonium Tetraselenotungstate In this chapter, we report the results of regio- and stereospecific, nucleophilic ring opening of chirally pure N-tosyl aziridines with tetraethylammonium tetraselenotungstate [Et4N]2WSe4 as selenium transfer reagent to afford a number of β- sulfonamidodiselenides in good yields. Using this methodology, carbohydrate derived β- sulfonamidodiselenides from the corresponding carbohydrate derived aziridines have been synthesized. These enantiopure diselenide derivatives have the potential to be used as chiral ligands in diethyl zinc addition to aldehydes. Chapter 2: Ring Opening of Aziridine/Epoxide, Disulfide Formation, Reduction of Disulfide Bond and Michael Reaction In this chapter, we report a systematic study of tetrathiomolybdate mediated tandem regio- and stereospecific ring opening of aziridines, disulfide formation, in situ reduction of disulfide bond followed by Michael reaction in an one pot operation to give a variety of β-sulfonamidosulfides in good yields. The main advantage of this methodology is that four reactions involving three components take place in a one-pot operation. Chapter 3: Part 1: New Thia-aza Payne type Rearrangement Mediated by Benzyltriethylammonium Tetrathiomolybdate In this chapter, reaction of aziridinemethanol sulfonate esters with tetrathiomolybdate to give thiirane derivatives as the major product and cyclic disulfides as minor product under mild reaction conditions via an unprecedented thia-aza-Payne type rearrangement have been presented. Interestingly, when the reaction of tetrathiomolybdate was carried out with 2-aziridino-cyclohexanol derivatives it resulted in the formation of thia-bicyclo[3.1.1]heptane or dithia-bicyclo[3.2.1]octane derivatives. Chapter 3: Part 2: New selena-aza Payne Type Rearrangement Mediated by Tetraethylammonium Tetraselenotungstate In this chapter, reaction of tetraselenotungstate with simple N-tosyl aziridinemethanol tosylates to give allyl amine derivatives as the only product via an unprecedented selena-aza-Payne type rearrangement is discussed. When the methodology is extended to disubstituted N-tosyl aziridinemethanol tosylates, regio- and stereospecific ring opening of aziridines occurs to afford allyl amine derivatives as the major products and cyclic five membered diselenides as the minor products in good yields. Chapter 3: Part 3: Synthesis of Sulfur and Selenium Heterocycles by Azirdine Ring Opening followed by Cyclization In this chapter, studies on the synthesis of sulfur and selenium-heterocycles by aziridine ring opening followed by cyclization of N-tosyl aziridino-ethanol tosylates using tetrathiomolybdate as a sulfur transfer reagent and tetraselenotungstate as a selenium transfer reagent respectively are presented. Chapter 4: Tetrathiomolybdate Mediated Ring Opening of bis-Aziridines, bis-Epoxides and Aziridino-epoxides In this chapter, studies on the synthesis and ring opening of bis-aziridines, bis-epoxides and aziridino-epoxides with tetrathiomolybdate as the sulfur transfer reagent are presented. This has resulted in the synthesis of optically active sulfur heterocycles ranging from three membered to eight membered ring systems with excellent stereo and regio- control in good yields. Chapter 5: Part 1: Synthesis of Conformationally Locked, Bridged, Bicyclic Mono and Disulfides In this chapter, work related to the synthesis of conformationally locked bridged bicyclic disulfides and sulfides from cis-aziridino-epoxides by ring opening of both aziridines and epoxides in a tandem fashion using tetrathiomolybdate as a sulfur transfer reagent has been discussed. Comparative studies on the behavior of conformationally locked disulfides which has the dihedral angle close to zero (φ = 0) with disulfides having larger dihedral angles (φ>90) have been presented in this chapter. Some correlations have been made on the physicochemical characteristics of the disulfides with change in the dihedral angles. Chapter 5: Part 2: Synthesis of Conformationally Locked, Bridged, Bicyclic Diselenides In this chapter, work related to the development of a general synthetic methodology for the synthesis of conformationally locked, bridged diselena-bicyclo[3.2.1]octane skeleton by regio- and stereospecific, tandem nucleophilic ring opening of cis-1,4-aziridino-epoxides with tetraselenotungstate in one-pot are presented. To compare the behavior of conformationally locked diselenides which has the dihedral angle close to zero (φ = 0) with diselenides having larger dihedral angles (φ > 90), we have synthesized the acyclic diselenide (see chapter 1.2) and cyclic diselenide by regio- and stereospecific ring opening of simple aziridine and bis-aziridine respectively with tetraselenotungstate. Some correlations have been made on the physicochemical characteristics of the diselenides with change in the dihedral angles.

Page generated in 0.0655 seconds