• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 10
  • 3
  • 3
  • Tagged with
  • 44
  • 25
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identificação de elementos estruturais no tRNAsecuca determinantes da ligação com proteínas / Identification of structural elements of the tRNAsecuca determining its protein binding

Manzine, Livia Regina 25 January 2012 (has links)
Em Escherichia coli a formação e incorporação do aminoácido selenocisteína é um evento cotraducional dirigido pelo códon de terminação UGA e deve se a uma complexa via de biosíntese cujas principais proteínas envolvidas são: Selenocisteína sintase (SELA), Fator de elongação de selenocisteína (SELB), Selenofosfato sintetase (SELD), Seril-tRNAser sintetase, um tRNA de inserção de selenocisteína (tRNAsec ou SELC) e uma sequência específica no RNA mensageiro, denominada de Sequência de inserção de selenocisteína (SECIS). A incorporação de selenocisteína em proteínas bacterianas inicia-se com a aminoacilação do tRNAsec com serina pela enzima Seril-tRNA sintetase formando seril-tRNAsec que é posteriormente convertido a selenocisteil-tRNAsec pela enzima SELA através de selenofosfato. Dessa forma, o trabalho teve seu foco estabelecido na realização de estudos bioquímicos e biofísicos da proteína SELA e na análise da interação dessa proteína com o ligante SELC para determinação de parâmetros de ligação envolvidos na formação desse complexo. O gene codificante para a proteína SELA foi subclonado, expresso em linhagem bacteriana WL81460(DE3) e a proteína SELA foi purificada como descrito na literatura; entretanto, uma nova metodologia para sua purificação foi desenvolvida proporcionando maior rapidez e rendimento. Estudos de filtração em gel, eletroforese nativa, focalização isoelétrica, dicroísmo circular, espectroscopia de fluorescência intrínseca e crosslinking químico proporcionaram uma melhor caracterização da proteína SELA e consequentemente uma maior compreensão de seu comportamento em solução. Ensaios de espectroscopia de anisotropia de fluorescência revelaram que a proteína SELA é capaz de se associar em estruturas superiores ao estado decamérico; essa análise pôde ser corroborada principalmente por dados de microscopia eletrônica empregando a técnica de negative staining. A metodologia de anisotropia de fluorescência também permitiu analisar a interação da macromolécula SELA com o ligante específico SELC, bem como com outros tRNAs mutantes possibilitando a realização de um mapeamento das regiões de SELC importantes para a interação. Além disso, essa técnica também foi satisfatoriamente empregada na determinação da estequiometria de ligação do complexo SELA-SELC revelando a proporção de 1 molécula de SELA para 10 tRNAs, o que contraria dados literários publicados em 1991 e 1992. / The formation and incorporation of the amino acid selenocysteine in Escherichia coli is an event directed by cotraducional UGA codon and involves a complex biosynthesis pathway whose main proteins are: Selenocysteine synthase (SELA), elongation factor of selenocysteine (SELB), Selenophosphate synthetase (SELD), Seryl-tRNA synthetase, a selenocysteine tRNA (tRNAsec or SELC) and a specific sequence on the messenger RNA, called Selenocysteine insertion sequence (SECIS). The incorporation of selenocysteine in proteins of bacteria begins with the tRNAsec aminoacylation with serine by the enzyme Seryl-tRNA synthetase resulting in seryl-tRNAsec which is subsequently converted to selenocysteyl-tRNAsec by the enzyme Selenocysteine synthase (SELA). The selenium used in the conversion reaction is provided by Selenophosphate synthetase as selenophosphate and finally, the selenocysteyl-tRNAsec is delivered by the factor SELB to the ribosome. The present study focused on biochemical and biophysical studies of SELA protein and analysis of its interaction with the specific ligand (SELC) for determination of binding parameters involved in the formation of the complex. The gene coding for SELA protein was subcloned, expressed in WL81460(DE3) bacterial strain and the protein was purified as described in the literature; however a new, faster and more efficient method for its purification was developed. Studies of gel filtration, native gel electrophoresis, isoelectric focusing, circular dichroism, intrinsic fluorescence spectroscopy and chemical crosslinking provided a better characterization of SELA protein and a greater understanding of its behavior in solution. Analysis of fluorescence anisotropy spectroscopy revealed that SELA was able to associate in a supramolecular state. This analysis was mainly corroborated by data from electron microscopy employing negative staining technique. Fluorescence anisotropy methodology allowed us to analyse the interaction of SELA protein with the specific ligand SELC, as well as with others mutated tRNAs enabling a mapping of important regions in SELC for interaction. In addition, fluorescence anisotropy technique was also successfully used in determining the stoichiometry ratio of the complex SELA-SELC, showing a proportion of 1 molecule of SELA to 10 tRNAs, contraring to the literary data published in 1991 and 1992.
2

Identificação de elementos estruturais no tRNAsecuca determinantes da ligação com proteínas / Identification of structural elements of the tRNAsecuca determining its protein binding

Livia Regina Manzine 25 January 2012 (has links)
Em Escherichia coli a formação e incorporação do aminoácido selenocisteína é um evento cotraducional dirigido pelo códon de terminação UGA e deve se a uma complexa via de biosíntese cujas principais proteínas envolvidas são: Selenocisteína sintase (SELA), Fator de elongação de selenocisteína (SELB), Selenofosfato sintetase (SELD), Seril-tRNAser sintetase, um tRNA de inserção de selenocisteína (tRNAsec ou SELC) e uma sequência específica no RNA mensageiro, denominada de Sequência de inserção de selenocisteína (SECIS). A incorporação de selenocisteína em proteínas bacterianas inicia-se com a aminoacilação do tRNAsec com serina pela enzima Seril-tRNA sintetase formando seril-tRNAsec que é posteriormente convertido a selenocisteil-tRNAsec pela enzima SELA através de selenofosfato. Dessa forma, o trabalho teve seu foco estabelecido na realização de estudos bioquímicos e biofísicos da proteína SELA e na análise da interação dessa proteína com o ligante SELC para determinação de parâmetros de ligação envolvidos na formação desse complexo. O gene codificante para a proteína SELA foi subclonado, expresso em linhagem bacteriana WL81460(DE3) e a proteína SELA foi purificada como descrito na literatura; entretanto, uma nova metodologia para sua purificação foi desenvolvida proporcionando maior rapidez e rendimento. Estudos de filtração em gel, eletroforese nativa, focalização isoelétrica, dicroísmo circular, espectroscopia de fluorescência intrínseca e crosslinking químico proporcionaram uma melhor caracterização da proteína SELA e consequentemente uma maior compreensão de seu comportamento em solução. Ensaios de espectroscopia de anisotropia de fluorescência revelaram que a proteína SELA é capaz de se associar em estruturas superiores ao estado decamérico; essa análise pôde ser corroborada principalmente por dados de microscopia eletrônica empregando a técnica de negative staining. A metodologia de anisotropia de fluorescência também permitiu analisar a interação da macromolécula SELA com o ligante específico SELC, bem como com outros tRNAs mutantes possibilitando a realização de um mapeamento das regiões de SELC importantes para a interação. Além disso, essa técnica também foi satisfatoriamente empregada na determinação da estequiometria de ligação do complexo SELA-SELC revelando a proporção de 1 molécula de SELA para 10 tRNAs, o que contraria dados literários publicados em 1991 e 1992. / The formation and incorporation of the amino acid selenocysteine in Escherichia coli is an event directed by cotraducional UGA codon and involves a complex biosynthesis pathway whose main proteins are: Selenocysteine synthase (SELA), elongation factor of selenocysteine (SELB), Selenophosphate synthetase (SELD), Seryl-tRNA synthetase, a selenocysteine tRNA (tRNAsec or SELC) and a specific sequence on the messenger RNA, called Selenocysteine insertion sequence (SECIS). The incorporation of selenocysteine in proteins of bacteria begins with the tRNAsec aminoacylation with serine by the enzyme Seryl-tRNA synthetase resulting in seryl-tRNAsec which is subsequently converted to selenocysteyl-tRNAsec by the enzyme Selenocysteine synthase (SELA). The selenium used in the conversion reaction is provided by Selenophosphate synthetase as selenophosphate and finally, the selenocysteyl-tRNAsec is delivered by the factor SELB to the ribosome. The present study focused on biochemical and biophysical studies of SELA protein and analysis of its interaction with the specific ligand (SELC) for determination of binding parameters involved in the formation of the complex. The gene coding for SELA protein was subcloned, expressed in WL81460(DE3) bacterial strain and the protein was purified as described in the literature; however a new, faster and more efficient method for its purification was developed. Studies of gel filtration, native gel electrophoresis, isoelectric focusing, circular dichroism, intrinsic fluorescence spectroscopy and chemical crosslinking provided a better characterization of SELA protein and a greater understanding of its behavior in solution. Analysis of fluorescence anisotropy spectroscopy revealed that SELA was able to associate in a supramolecular state. This analysis was mainly corroborated by data from electron microscopy employing negative staining technique. Fluorescence anisotropy methodology allowed us to analyse the interaction of SELA protein with the specific ligand SELC, as well as with others mutated tRNAs enabling a mapping of important regions in SELC for interaction. In addition, fluorescence anisotropy technique was also successfully used in determining the stoichiometry ratio of the complex SELA-SELC, showing a proportion of 1 molecule of SELA to 10 tRNAs, contraring to the literary data published in 1991 and 1992.
3

Investigation Into the Role of the C-Terminal Vicinal Cysteine Residues in High MR Thioredoxin Reductases

Lacey, Brian 18 June 2008 (has links)
Mammalian thioredoxin reductase (TR) contains the rare amino acid selenocysteine (Sec), which is essential for the enzyme’s catalytic activity. Substitution of the catalytic Sec residue for a cysteine (Cys) residue, results in a drop in kcat of 100- fold. Homologous high molecular weight TRs from other eukaryotes such as D. melanogaster and C. elegans, have naturally evolved a Sec to Cys substitution in their active sites and these enzymes function with high catalytic activity without the need for a Sec residue. Thus, various TRs can catalyze an identical reaction with either a Cys or Sec residue. A natural assumption in the field has always been that the lower nucleophilicity of a Cys thiol, relative to the selenol of Sec, is the reason for the much lower activity of the mammalian Cys-containing mutant. However, here I provide an alternative explanation. High Mr TRs contain either a Cys-Cys or Cys-Sec dyad that forms an eight-membered ring in the oxidized state during the redox cycle of the enzyme. These eight-membered ring structures are rare in protein structures, presumably due to the strain induced in the intervening peptide bond between the Cys residues. Here I take a “chemical approach” to studying the enzyme mechanism of TR by breaking it into two pieces. This approach is possible because of TR’s structural and mechanistic similarity to glutathione reductase (GR). In comparison to GR, TR contains an additional thiol-disulfide exchange step resulting from the presence of a sixteen amino acid C-terminal extension containing either a vicinal disulfide bond or vicinal selenylsulfide bond. This additional thiol-disulfide exchange step is in the form of the reduction and opening of the eight-membered ring motif. I have constructed a truncated version of the enzyme lacking the amino acid sequence possessing the ring motif so that I could isolate this ring-opening step from the rest of the catalytic cycle by using peptide disulfides/selenylsulfides as substrates. The results of this study using peptide substrates show that the ring opening step is the step of the catalytic cycle that is most effected by Sec to Cys substitution because the higher pKa of the Cys thiolate in comparison to the Sec selenolate means that the Cys residue must be protonated in this step.
4

Determinação estrutural da proteína Selenocisteína Sintase de Escherichia coli / Structural determination of Selenocysteine Synthase from Escherichia coli

Cassago, Alexandre 27 August 2010 (has links)
A biossíntese do 21o. aminoácido, Selenocisteína (Sec - U), envolve uma complexa maquinaria enzimática composta, em eubactérias, pela Selenocisteína Sintase (SELA), Fator de Elongação de Selenocisteína (SELB), Selenofosfato Sintetase (SELD) e tRNA de Inserção Selenocisteína (tRNAsec). Em arqueobactérias e eucariotos existem ainda O fosforil tRNAsec Kinase (PSTK), SepSecS como SELA, EFSec como SELB, SPS1 e 2 como SELD e Proteína Ligante ao SECIS 2 (SBP2). O resíduo Selenocisteína é incorporado à proteína nascente no códon semelhante ao UGA de terminação identificado como local para incorporação de Sec, pela presença da Sequência de Inserção de Selenocisteína (SECIS), juntamente ao códon UGA na região codificante em bactérias e na região 3\'não codificante em arqueobactérias e eucariotos. SELA desempenha um papel central nessa via de biossíntese pela modificação do resíduo de Serina carregado ao tRNAsec pela enzima Seril-tRNA Sintetase (SerRS) convertendo-o em Selenocisteína. Essa enzima forma um complexo homodecamérico que reconhece e liga-se especificamente a SeriltRNAsec. A interação específica entre SELA e o tRNA permanece ainda não determinada. Nosso objetivo é a investigação estrutural por Espalhamento de Raios-X a Baixos Ângulos (SAXS) e cristalização da SELA e SELA-tRNAsec de Escherichia coli. Dados de SAXS determinaram parâmetros dimensionais como dimensão máxima, massa molecular e raio de giro. O modelo ab-inition foi calculado assumindo a simetria P52 de projeções de Microscopia Eletrônica de Transmissão (TEM). Os cristais obtidos do complexo SELA-tRNA mostraram o grupo espacial e dimensões da cela, apesar da baixa resolução dos dados. Para melhorar os estudos estruturais um modelo para proteína SELA de Escherichia coli foi construído usando o alinhamento da sequência de aminoácidos e o PDB, da proteína SELA putativa, de Methanococcus jannaschii, que apesar da baixa identidade resultou em um modelo muito bom. Adicionalmente, uma Análise de Acoplamento Estatístico (SCA) foi realizada baseada em alinhamentos múltiplos da proteína SELA, ordenando os aminoácidos mais conservados e a relação existente entre eles. / The biosynthesis of the 21th amino acid, Selenocysteine (Sec - U), requires complex enzymatic machinery composed in eubacteria of: Selenocysteine Synthase (SELA), Selenocysteine Specific Elongation Factor (SELB), Selenophosphate Synthetase (SELD) and a specific Selenocysteine Inserting tRNA (tRNAsec). In archaeabacteria and eukaryotes there are O phosphoryl tRNAsec Kinase (PSTK), SepSecS as SELA, EFSec as SELB, SPS1 and 2 as SELD and SECIS Binding Protein 2 (SBP2). The Selenocysteine residue is incorporated into a nascent protein at a UGA like stop codon signaling as a Sec incorporation site by the presence of a Selenocysteine Insertion Sequence (SECIS), embedding the UGA codon in the coding region in bacteria and in a 3\' UTR in archaea and eukarya. SELA plays a central role in this pathway by modifying the Serine residue charged into the tRNAsec by Seryl-tRNA Synthetase (SerRS) and converting it into Selenocysteine. This enzyme forms a homodecameric complex that specifically recognizes and binds to Seryl-tRNAsec. The specific interaction of SELA and its tRNA remains unclear. Our aim is the structural investigation by Small Angle X ray Scattering (SAXS) and crystallization of Escherichia coli SELA and SELA-tRNAsec. SAXS datas determined dimensional parameters as maximum dimension, molecular mass and radius of gyration. Abinition model calculation was made assuming a P52 symmetry from Transmission Electron Microscope (TEM) projections Crystals of SELA-tRNA complex shown the space-group and cell dimensions, although its low resolution. To improve the structural studies a SELA model of E. coli was built using the amino acid sequences alignment and the PDB from Methanococcus jannaschii, SELA putative protein, which although the lower identities result in a very good model. In addition, a Statistical Coupling Analysis (SCA) was performed based on a multiple sequence alignment of SELA, ordering the most preserved amino acid and the relation between them.
5

Determinação estrutural da proteína Selenocisteína Sintase de Escherichia coli / Structural determination of Selenocysteine Synthase from Escherichia coli

Alexandre Cassago 27 August 2010 (has links)
A biossíntese do 21o. aminoácido, Selenocisteína (Sec - U), envolve uma complexa maquinaria enzimática composta, em eubactérias, pela Selenocisteína Sintase (SELA), Fator de Elongação de Selenocisteína (SELB), Selenofosfato Sintetase (SELD) e tRNA de Inserção Selenocisteína (tRNAsec). Em arqueobactérias e eucariotos existem ainda O fosforil tRNAsec Kinase (PSTK), SepSecS como SELA, EFSec como SELB, SPS1 e 2 como SELD e Proteína Ligante ao SECIS 2 (SBP2). O resíduo Selenocisteína é incorporado à proteína nascente no códon semelhante ao UGA de terminação identificado como local para incorporação de Sec, pela presença da Sequência de Inserção de Selenocisteína (SECIS), juntamente ao códon UGA na região codificante em bactérias e na região 3\'não codificante em arqueobactérias e eucariotos. SELA desempenha um papel central nessa via de biossíntese pela modificação do resíduo de Serina carregado ao tRNAsec pela enzima Seril-tRNA Sintetase (SerRS) convertendo-o em Selenocisteína. Essa enzima forma um complexo homodecamérico que reconhece e liga-se especificamente a SeriltRNAsec. A interação específica entre SELA e o tRNA permanece ainda não determinada. Nosso objetivo é a investigação estrutural por Espalhamento de Raios-X a Baixos Ângulos (SAXS) e cristalização da SELA e SELA-tRNAsec de Escherichia coli. Dados de SAXS determinaram parâmetros dimensionais como dimensão máxima, massa molecular e raio de giro. O modelo ab-inition foi calculado assumindo a simetria P52 de projeções de Microscopia Eletrônica de Transmissão (TEM). Os cristais obtidos do complexo SELA-tRNA mostraram o grupo espacial e dimensões da cela, apesar da baixa resolução dos dados. Para melhorar os estudos estruturais um modelo para proteína SELA de Escherichia coli foi construído usando o alinhamento da sequência de aminoácidos e o PDB, da proteína SELA putativa, de Methanococcus jannaschii, que apesar da baixa identidade resultou em um modelo muito bom. Adicionalmente, uma Análise de Acoplamento Estatístico (SCA) foi realizada baseada em alinhamentos múltiplos da proteína SELA, ordenando os aminoácidos mais conservados e a relação existente entre eles. / The biosynthesis of the 21th amino acid, Selenocysteine (Sec - U), requires complex enzymatic machinery composed in eubacteria of: Selenocysteine Synthase (SELA), Selenocysteine Specific Elongation Factor (SELB), Selenophosphate Synthetase (SELD) and a specific Selenocysteine Inserting tRNA (tRNAsec). In archaeabacteria and eukaryotes there are O phosphoryl tRNAsec Kinase (PSTK), SepSecS as SELA, EFSec as SELB, SPS1 and 2 as SELD and SECIS Binding Protein 2 (SBP2). The Selenocysteine residue is incorporated into a nascent protein at a UGA like stop codon signaling as a Sec incorporation site by the presence of a Selenocysteine Insertion Sequence (SECIS), embedding the UGA codon in the coding region in bacteria and in a 3\' UTR in archaea and eukarya. SELA plays a central role in this pathway by modifying the Serine residue charged into the tRNAsec by Seryl-tRNA Synthetase (SerRS) and converting it into Selenocysteine. This enzyme forms a homodecameric complex that specifically recognizes and binds to Seryl-tRNAsec. The specific interaction of SELA and its tRNA remains unclear. Our aim is the structural investigation by Small Angle X ray Scattering (SAXS) and crystallization of Escherichia coli SELA and SELA-tRNAsec. SAXS datas determined dimensional parameters as maximum dimension, molecular mass and radius of gyration. Abinition model calculation was made assuming a P52 symmetry from Transmission Electron Microscope (TEM) projections Crystals of SELA-tRNA complex shown the space-group and cell dimensions, although its low resolution. To improve the structural studies a SELA model of E. coli was built using the amino acid sequences alignment and the PDB from Methanococcus jannaschii, SELA putative protein, which although the lower identities result in a very good model. In addition, a Statistical Coupling Analysis (SCA) was performed based on a multiple sequence alignment of SELA, ordering the most preserved amino acid and the relation between them.
6

Estudos moleculares das enzimas Fosfoseril-tRNA sintease de Trypanosoma brucei e Leishmania major e Seril-tRNA sintease de Trypanosoma brucei / Molecular studies the enzymes Fosfoseril-tRNA Kinase of the Trypanosoma brucei and Leishmania major and Seril-tRNA Sintetase of the Trypanosoma brucei

Evangelista, Jaqueline Pesciutti 15 July 2009 (has links)
O estudo do processo de tradução no metabolismo celular atrai o interesse de vários grupos, em particular, o estudo do 21o aminoácido, a selenocisteína. A incorporação da selecisteína foi descrita em Escherichia coli e recentemente em eucariotos. O primeiro passo desta via é iniciado pela Seril-tRNA Sintetase que aminoacila o Ser-tRNASec (SelC) com uma serina. Em E. coli, o segundo passo é realizado pela Sec-sintetase (SelA) que remove o grupo hidroxil da cadeia lateral da serina, formando um intermediário aminoacrilil. Este serve como aceptor de seleno-fosfato gerando a selenocisteína. Em eucariotos, o processo análogo é realizado pela PSTK e pela SepSecS, que fosforila e seleniza a serina respectivamente. Interessados nesta parte da via, iniciamos estudos moleculares das enzimas Fosfoseril-tRNA Kinase de Trypanosoma brucei e Leishmania major e Seril-tRNA Sintetase de Trypanosoma brucei. Para o gene da enzima Fosfoseril-tRNA Kinase de T. brucei não foi possível obter um clone sem mutação. Já o gene da enzima Fosfoseril-tRNA Kinase de L. major foi clonado em vetor pET28 e a enzima foi expressa em células de E. coli porém com baixo rendimento impedindo a continuidade dos experimentos planejados. Portanto passou-se a investigar a enzima envolvida no primeiro passo da via, no caso, a Seril-tRNA Sintetase de T. brucei. Esta já se encontrava clonada e expressando em E. coli na fração solúvel. A proteína recombinante foi purificada com precipitação com 60% de sulfato de amônio e resinas de hidrofobicidade e de afinidade por níquel. Experimentos de gel nativo, DLS e fluorescência de anisotropia revelaram que, após a purificação, a enzima permanece estável e livre de agregações, possuindo um raio hidrodinâmico de 4,32nm e massa molecular de 110kDa. Acima de 150nM de proteína, ela encontra-se inteiramente na forma dimérica. Estabelecidos estes parâmetros, informações sobre a ligação com o Ser-tRNASec poderão ser obtidos a partir da técnica de anisotropia de fluorescência visto que experimentos iniciais realizados com a SerRS adicionando-se o Ser-tRNASec mostraram-se promissores. / The translation process study is central role in the cellular metabolism and attracts the interest of several groups, in particular, the study of the 21º amino acid, the selenocystein. The selenocystein incorporation pathway was described in Escherichia coli and recently in eukaryotes. The first step of this pathway is initiated by Seryl-tRNA Synthetase that aminoacilates the Ser-tRNASec (SELC) with serine. In E. coli, the second step is performed by the Sec-synthase (SELA) that removes hydroxyl group of the serine side chain, forming an aminoacrylil intermediary. This serves as an acceptor of seleno phosphate generating the selenocystein. In eukaryotes, the similar process is performed by PSTK and SepSecS, which phosphorylate serine and adds the selenium, respectively. Interested in this pathway, we performed initial molecular studies of the Phosphoseryl-tRNA synthetase of Trypanosoma brucei and Leishmania major and Seryl-tRNA synthetase of Trypanosoma brucei. The gene that encodes T. brucei Phosphoseryl-tRNA synthetase was obtained with several mutations. However, the gene encoding the T. brucei Phosphoseryl-tRNA synthetase was cloned into pET28 vector and the enzyme was expressed in E. coli cells, however at low amounts hampering the intended experiments. Therefore we initiated the investigation of the enzyme involved in the first step of this pathway, the Seryl-tRNA Synthetase from T. brucei. The enzyme was already cloned and expressing in the soluble fraction of E. coli. The recombinant protein was purified using 60% ammonium sulfate precipitation, hydrophobic and nickel affinity chromatography. Native gel experiments, DLS and anisotropy fluorescence was performed and allowed to conclude that, after purification, the enzyme remains stable and free of aggregation, with a hydrodynamic radius of 4.32 nm, molecular weight of 110kDa. Above 150nM protein its entirely in the dimeric form. Information about Ser-tRNASec binding can now be obtained from the technique of anisotropy seen that initial experiments with SerRS add Ser-tRNASec be shown to be promising.
7

Estudos moleculares das enzimas envolvidas na biossíntese de selenocisteína em Trypanosoma brucei e Leishmania major / Molecular studies of the enzymes involved in selenocysteine synthesis in Trypanosoma brucei and Leishmania major

Rodrigues, Elisandra Márcia 14 August 2008 (has links)
Umas das principais formas biológicas de incorporação do selênio é na forma de um aminoácido denominado selenocisteína (Sec, U), que é incorporado co-traducionalmente ao polipeptídio nascente em posições específicas do códon UGA, que normalmente é reconhecido como códon de parada. A incorporação de selenocisteína em E. coli já está completamente esclarecida, com a participação dos genes que codifica para selenocisteína sintase (SELA), seril-tRNA sintetase (SerRS), um tRNASec específico (SELC), selenofosfato sintetase (SELD) e um fator de elongação próprio (SELB). Entretanto em eucariotos não há homólogos para SELA e existem evidências de haver a necessidade de dois passos enzimáticos que substituem a atividade desempenhada por SELA, com uma fosforilação da serina seguida de uma selenilação através das enzimas Fosfo-Seril-tRNASec Kinase (PSTK) e Sep-tRNA:Sec-tRNA sintase (SepSecS), respectivamente. A via de biossíntese e incorporação de selenocisteína é muito estudada em alguns organismos, mas ainda pouco explorada em Kinetoplastida. Nesse sentido, realizaram-se estudos moleculares das enzimas envolvidas nessa via, mais especificamente em Trypanosoma brucei e Leishmania major. Foram identificados o elemento SECIS na região 3´ do mRNA que atua no reconhecimento do códon UGA interno e, em fase de leitura na inserção de selenocisteína em Leishmania major e Leishmania infantum; a incorporação de Se75 em proteínas de Leishmania; a ocorrência do tRNASec em Trypanosoma e Leishmania e, adicionalmente todos os genes necessários para a síntese de selenocisteína: SELB, SELD, PSTK e SECp43. Foram obtidos clones dos genes selB e selD em vetor de expressão pET28a(+) e as proteínas foram expressas em bactérias Escherichia coli cepa BL21 (DE3). A proteína recombinante SELD foi purificada em cromatografia de afinidade e seu pI e massa molecular foram determinados usando as técnicas de sistema Phast de eletroforese e gel nativo. As proteínas SELB, SELD, SECp43 e Seril tRNA sintetase foram imunolocalizadas no citoplasma de células nativas de T. brucei. Uma nova metodologia \"PTP tagging\" foi utilizada para estudos de interação protéica com uso de proteínas alvos SECp43, SELB e PSTK na busca de novas proteínas ligantes na via de selenocisteínas em T. brucei. Futuras investigações moleculares e estruturais das enzimas envolvidas na via de selenocisteína em Kinetoplastida poderão trazer informações relevantes no entendimento da biossíntese desse aminoácido, assim como possibilitar o desenvolvimento de inibidores específicos visando o tratamento de doenças causadas pelos parasitas Trypanosoma brucei e Leishmania major. / One of the main biological forms of the selenium incorporation is the amino acid form named selenocysteine (Sec, U), which is incorporated co-translationally at the emerging new polypeptide in the specific positions at the UGA codon, that is usually recognized as stop codon. The incorporation of the selenocysteine in E.coli is already solved with the involvement of the genes that codify to selenocysteine synthase (SELA), seryl tRNA synthetase (SerRS), a specific tRNASec (SELC), selenophosphate synthetase (SELD) and a selenocysteine-specific translation elongation factor (SELB). However, in eukarya there is no SELA homologue, but there are evidences about the requirement of the two enzymatic steps that replace the activity performed by SELA, the fosforilation of the serine followed by selenocysteylation through the phosphoseryl-tRNASec kinase (PSTK) and Sep-tRNA:Sec-tRNA synthase (SepSecS) enzymes, respectively. Currently, the selenocysteine synthesis and its incorporation is more studied in many organisms, but less explored in Kinetoplastid. Subsequently, the molecular studies were done with the enzymes involved in this pathway, especially in Trypanosoma brucei and Leishmania major. The SECIS element was identified in the region 3´ of the mRNA, that acts in the recognition of the UGA codon positioned within a gene\'s open reading frame on the insertion of the selenocysteine in Leishmania major and Leishmania infantum; the incorporation of 75Se into Leishmania proteins, the occurrence of selenocysteine-tRNASec in both Leishmania and Trypanosoma; in addition, the finding of all genes necessary for selenocysteine synthesis, such as: SELB, SELD, PSTK, and SECp43. Clones were obtained from the selB and selD genes in the pET28a(+) expression vector and the enzymes were expressed in Escherichia coli BL21 (DE3). The recombinant SELD protein was purified by affinity chromatography and its pI and molecular mass were determined using: isoeletrophocusing electrophoresis and native gel. The proteins SELB, SELD, SECp43, and sery-tRNA synhetase were immune located in the cytoplasm in T. brucei native cells. A new methodology \"PTP tagging\" was utilized for protein interaction studies by using target proteins SECp43, SELB and PSTK to search new tagged proteins in selenocysteine T. brucei synthesis. Future molecular and structural investigation of the enzymes involved in Kinetoplastida selenocysteine biosynthesis will provide relevant information for understanding of the synthesis of this amino acid as well as the development of the specific inhibitors, focusing the treatment of the disease caused by Trypanosoma brucei e Leishmania major parasites.
8

Estudos moleculares das enzimas envolvidas na biossíntese de selenocisteína em Trypanosoma brucei e Leishmania major / Molecular studies of the enzymes involved in selenocysteine synthesis in Trypanosoma brucei and Leishmania major

Elisandra Márcia Rodrigues 14 August 2008 (has links)
Umas das principais formas biológicas de incorporação do selênio é na forma de um aminoácido denominado selenocisteína (Sec, U), que é incorporado co-traducionalmente ao polipeptídio nascente em posições específicas do códon UGA, que normalmente é reconhecido como códon de parada. A incorporação de selenocisteína em E. coli já está completamente esclarecida, com a participação dos genes que codifica para selenocisteína sintase (SELA), seril-tRNA sintetase (SerRS), um tRNASec específico (SELC), selenofosfato sintetase (SELD) e um fator de elongação próprio (SELB). Entretanto em eucariotos não há homólogos para SELA e existem evidências de haver a necessidade de dois passos enzimáticos que substituem a atividade desempenhada por SELA, com uma fosforilação da serina seguida de uma selenilação através das enzimas Fosfo-Seril-tRNASec Kinase (PSTK) e Sep-tRNA:Sec-tRNA sintase (SepSecS), respectivamente. A via de biossíntese e incorporação de selenocisteína é muito estudada em alguns organismos, mas ainda pouco explorada em Kinetoplastida. Nesse sentido, realizaram-se estudos moleculares das enzimas envolvidas nessa via, mais especificamente em Trypanosoma brucei e Leishmania major. Foram identificados o elemento SECIS na região 3´ do mRNA que atua no reconhecimento do códon UGA interno e, em fase de leitura na inserção de selenocisteína em Leishmania major e Leishmania infantum; a incorporação de Se75 em proteínas de Leishmania; a ocorrência do tRNASec em Trypanosoma e Leishmania e, adicionalmente todos os genes necessários para a síntese de selenocisteína: SELB, SELD, PSTK e SECp43. Foram obtidos clones dos genes selB e selD em vetor de expressão pET28a(+) e as proteínas foram expressas em bactérias Escherichia coli cepa BL21 (DE3). A proteína recombinante SELD foi purificada em cromatografia de afinidade e seu pI e massa molecular foram determinados usando as técnicas de sistema Phast de eletroforese e gel nativo. As proteínas SELB, SELD, SECp43 e Seril tRNA sintetase foram imunolocalizadas no citoplasma de células nativas de T. brucei. Uma nova metodologia \"PTP tagging\" foi utilizada para estudos de interação protéica com uso de proteínas alvos SECp43, SELB e PSTK na busca de novas proteínas ligantes na via de selenocisteínas em T. brucei. Futuras investigações moleculares e estruturais das enzimas envolvidas na via de selenocisteína em Kinetoplastida poderão trazer informações relevantes no entendimento da biossíntese desse aminoácido, assim como possibilitar o desenvolvimento de inibidores específicos visando o tratamento de doenças causadas pelos parasitas Trypanosoma brucei e Leishmania major. / One of the main biological forms of the selenium incorporation is the amino acid form named selenocysteine (Sec, U), which is incorporated co-translationally at the emerging new polypeptide in the specific positions at the UGA codon, that is usually recognized as stop codon. The incorporation of the selenocysteine in E.coli is already solved with the involvement of the genes that codify to selenocysteine synthase (SELA), seryl tRNA synthetase (SerRS), a specific tRNASec (SELC), selenophosphate synthetase (SELD) and a selenocysteine-specific translation elongation factor (SELB). However, in eukarya there is no SELA homologue, but there are evidences about the requirement of the two enzymatic steps that replace the activity performed by SELA, the fosforilation of the serine followed by selenocysteylation through the phosphoseryl-tRNASec kinase (PSTK) and Sep-tRNA:Sec-tRNA synthase (SepSecS) enzymes, respectively. Currently, the selenocysteine synthesis and its incorporation is more studied in many organisms, but less explored in Kinetoplastid. Subsequently, the molecular studies were done with the enzymes involved in this pathway, especially in Trypanosoma brucei and Leishmania major. The SECIS element was identified in the region 3´ of the mRNA, that acts in the recognition of the UGA codon positioned within a gene\'s open reading frame on the insertion of the selenocysteine in Leishmania major and Leishmania infantum; the incorporation of 75Se into Leishmania proteins, the occurrence of selenocysteine-tRNASec in both Leishmania and Trypanosoma; in addition, the finding of all genes necessary for selenocysteine synthesis, such as: SELB, SELD, PSTK, and SECp43. Clones were obtained from the selB and selD genes in the pET28a(+) expression vector and the enzymes were expressed in Escherichia coli BL21 (DE3). The recombinant SELD protein was purified by affinity chromatography and its pI and molecular mass were determined using: isoeletrophocusing electrophoresis and native gel. The proteins SELB, SELD, SECp43, and sery-tRNA synhetase were immune located in the cytoplasm in T. brucei native cells. A new methodology \"PTP tagging\" was utilized for protein interaction studies by using target proteins SECp43, SELB and PSTK to search new tagged proteins in selenocysteine T. brucei synthesis. Future molecular and structural investigation of the enzymes involved in Kinetoplastida selenocysteine biosynthesis will provide relevant information for understanding of the synthesis of this amino acid as well as the development of the specific inhibitors, focusing the treatment of the disease caused by Trypanosoma brucei e Leishmania major parasites.
9

Estudos moleculares das enzimas Fosfoseril-tRNA sintease de Trypanosoma brucei e Leishmania major e Seril-tRNA sintease de Trypanosoma brucei / Molecular studies the enzymes Fosfoseril-tRNA Kinase of the Trypanosoma brucei and Leishmania major and Seril-tRNA Sintetase of the Trypanosoma brucei

Jaqueline Pesciutti Evangelista 15 July 2009 (has links)
O estudo do processo de tradução no metabolismo celular atrai o interesse de vários grupos, em particular, o estudo do 21o aminoácido, a selenocisteína. A incorporação da selecisteína foi descrita em Escherichia coli e recentemente em eucariotos. O primeiro passo desta via é iniciado pela Seril-tRNA Sintetase que aminoacila o Ser-tRNASec (SelC) com uma serina. Em E. coli, o segundo passo é realizado pela Sec-sintetase (SelA) que remove o grupo hidroxil da cadeia lateral da serina, formando um intermediário aminoacrilil. Este serve como aceptor de seleno-fosfato gerando a selenocisteína. Em eucariotos, o processo análogo é realizado pela PSTK e pela SepSecS, que fosforila e seleniza a serina respectivamente. Interessados nesta parte da via, iniciamos estudos moleculares das enzimas Fosfoseril-tRNA Kinase de Trypanosoma brucei e Leishmania major e Seril-tRNA Sintetase de Trypanosoma brucei. Para o gene da enzima Fosfoseril-tRNA Kinase de T. brucei não foi possível obter um clone sem mutação. Já o gene da enzima Fosfoseril-tRNA Kinase de L. major foi clonado em vetor pET28 e a enzima foi expressa em células de E. coli porém com baixo rendimento impedindo a continuidade dos experimentos planejados. Portanto passou-se a investigar a enzima envolvida no primeiro passo da via, no caso, a Seril-tRNA Sintetase de T. brucei. Esta já se encontrava clonada e expressando em E. coli na fração solúvel. A proteína recombinante foi purificada com precipitação com 60% de sulfato de amônio e resinas de hidrofobicidade e de afinidade por níquel. Experimentos de gel nativo, DLS e fluorescência de anisotropia revelaram que, após a purificação, a enzima permanece estável e livre de agregações, possuindo um raio hidrodinâmico de 4,32nm e massa molecular de 110kDa. Acima de 150nM de proteína, ela encontra-se inteiramente na forma dimérica. Estabelecidos estes parâmetros, informações sobre a ligação com o Ser-tRNASec poderão ser obtidos a partir da técnica de anisotropia de fluorescência visto que experimentos iniciais realizados com a SerRS adicionando-se o Ser-tRNASec mostraram-se promissores. / The translation process study is central role in the cellular metabolism and attracts the interest of several groups, in particular, the study of the 21º amino acid, the selenocystein. The selenocystein incorporation pathway was described in Escherichia coli and recently in eukaryotes. The first step of this pathway is initiated by Seryl-tRNA Synthetase that aminoacilates the Ser-tRNASec (SELC) with serine. In E. coli, the second step is performed by the Sec-synthase (SELA) that removes hydroxyl group of the serine side chain, forming an aminoacrylil intermediary. This serves as an acceptor of seleno phosphate generating the selenocystein. In eukaryotes, the similar process is performed by PSTK and SepSecS, which phosphorylate serine and adds the selenium, respectively. Interested in this pathway, we performed initial molecular studies of the Phosphoseryl-tRNA synthetase of Trypanosoma brucei and Leishmania major and Seryl-tRNA synthetase of Trypanosoma brucei. The gene that encodes T. brucei Phosphoseryl-tRNA synthetase was obtained with several mutations. However, the gene encoding the T. brucei Phosphoseryl-tRNA synthetase was cloned into pET28 vector and the enzyme was expressed in E. coli cells, however at low amounts hampering the intended experiments. Therefore we initiated the investigation of the enzyme involved in the first step of this pathway, the Seryl-tRNA Synthetase from T. brucei. The enzyme was already cloned and expressing in the soluble fraction of E. coli. The recombinant protein was purified using 60% ammonium sulfate precipitation, hydrophobic and nickel affinity chromatography. Native gel experiments, DLS and anisotropy fluorescence was performed and allowed to conclude that, after purification, the enzyme remains stable and free of aggregation, with a hydrodynamic radius of 4.32 nm, molecular weight of 110kDa. Above 150nM protein its entirely in the dimeric form. Information about Ser-tRNASec binding can now be obtained from the technique of anisotropy seen that initial experiments with SerRS add Ser-tRNASec be shown to be promising.
10

Estudo celular, bioquímico e biofísico da enzima selenofosfato sintetase de Naegleria gruberi / Biochemical, biophysical and cellular studies of selenophosphate synthetase from Naegleria gruberi

Bellini, Natalia Karla 16 July 2015 (has links)
O microrganismo alvo deste estudo pertence ao gênero Naegleria, que compreende amebas de vida livre amplamente distribuídas ao redor do mundo. Estas possuem estratégias de adaptação em condições de temperatura e pH que envolvem a diferenciação das células para as formas flagelada e cística. A via de biossíntese e incorporação do aminoácido selenocisteína (Sec, U) em N. gruberi foi descrita e, devido à incorporação co-traducional deste aminoácido em resposta a um códon UGA em fase de leitura, possui diversos fatores específicos que tornam a via alvo de estudos moleculares. Dentre os genes identificados, destaca-se o de selenofosfato sintetase (SPS), uma proteína funcionalmente dimérica envolvida na catálise da conversão de seleneto e adenosina 5´-trifosfato (ATP) em selenofosfato, essencial à síntese de Sec. Diferindo das SPSs homólogas, em N. gruberi a proteína (NgSPS2) é codificada em fusão N-terminal com uma metiltransferase e totaliza 737 aminoácidos. Esta descoberta motivou os objetivos da pesquisa baseada na investigação celular de NgSPS2 nativa nas três diferentes formas de vida de N. gruberi através de ensaios imunoenzimáticos, e a caracterização bioquímica e biofísica da proteína recombinante. A análise dos resultados obtidos por Western blot indicaram que NgSPS2, in vivo, apresenta os dois domínios metiltransferase e SPS separados após a tradução para uma cultura amebóide e, após alcançar a diferenciação de cada uma das formas isoladamente, este resultado se confirmou também para cistos e flagelados. A investigação de N. gruberi em cultura indica o aumento na atividade da via de síntese de selenoproteínas na presença de selênio conferindo resistência às condições de estresse oxidativo. A caracterização bioquímica do domínio C-terminal de NgSPS2, por cromatografia de exclusão molecular analítica e eletroforese não desnaturante, revelou predominância de dímeros em solução, coerente com SPSs homólogas. Os testes de cristalização não resultaram na obtenção de cristais, porém a proteólise limitada permitiu selecionar tripsina como potencial para a clivagem do N terminal do N terminal flexível. A conservação dos resíduos de aminoácidos funcionais em NgSPS2.CTD e seu comportamento em solução confirmam a obrigatoriedade da união de cada monômero e, por isso o domínio metiltransferase adicional pode ser desfavorável à montagem do dímero e in vivo a fusão é desfeita após a tradução. / The target microorganism of the present study belongs to the Naegleria genus. This genus includes free life amoebas widely distributed around the world that, in order to survive in bad temperature and pH environments, developed an adaptive strategy consisting of cells differentiation to flagellate and cystic form. The biosynthesis and incorporation of selenocysteine amino acid (Sec, U) in N. gruberi has been described and, because of the co-translational incorporation of this amino acid in response to a UGA codon during the reading step, this process has several specific factors which make it a target for molecular studies. Among the identified genes, we can highlight the one which encodes the selenophosphate synthetase that is involved in the catalytic conversion of selenite and adenosine triphosphate into selenium phosphate, a necessary step to the Sec synthesis that uses selenide and ATP to produce selenophosphate. SPS from N.gruberi is encoded with an methyltransferase N-terminal fused with the typical SPS C-terminal domain, an open read frame that contains 2211 nucleotides encoding 737 amino acids. This discovery has motivated the initial aims of this project, based on the cellular investigation of SPS2, native on the three different form lifes of N. gruberi, through immunoenzymatic assays, besides a study with the recombinant protein to clarify the biochemistry and biophysics features of NgSPS2. The results indicated that the protein do not keep both domains fused after the translation process, suggesting that they need to be separated to perform their biological function. The investigation of the N. gruberi culture revealed that the cells become less sensitive to stress agent in the presence of selenium, which seems to be correlated with the increasing activity of the selenoprotein synthesis. The biochemistry characterization of the NgSPS2 C-terminal domain, using size exclusion chromatography and electrophoresis under non-denaturing conditions revealed the predominance of dimers in solution according with the typical homologous SPS oligomeric state. The crystallization tests have not resulted in crystal growth; however, the limited proteolysis may be an alternative to optimize the crystallization process. These studies may enlarge the knowledge about the biosynthesis of Sec. in N. gruberi.

Page generated in 0.0875 seconds