Le texte généré automatiquement a été utilisé dans de nombreuses occasions à des buts différents. Il peut simplement passer des commentaires générés dans une discussion en ligne à une tâche beaucoup plus malveillante, comme manipuler des informations bibliographiques. Ainsi, cette thèse introduit d'abord différentes méthodes pour générer des textes libres ayant trait à un certain sujet et comment ces textes peuvent être utilisés. Par conséquent, nous essayons d'aborder plusieurs questions de recherche. La première question est comment et quelle est la meilleure méthode pour détecter un document entièrement généré.Ensuite, nous irons un peu plus loin et montrer la possibilité de détecter quelques phrases ou un petit paragraphe de texte généré automatiquement en proposant une nouvelle méthode pour calculer la similarité des phrases en utilisant leur structure grammaticale. La dernière question est comment détecter un document généré automatiquement sans aucun échantillon, ceci est utilisé pour illustrer le cas d'un nouveau générateur ou d'un générateur dont il est impossible de collecter des échantillons dessus.Cette thèse étudie également l'aspect industriel du développement. Un aperçu simple d'un flux de travail de publication d'un éditeur de premier plan est présenté. À partir de là, une analyse est effectuée afin de pouvoir intégrer au mieux notre méthode de détection dans le flux de production.En conclusion, cette thèse a fait la lumière sur de multiples questions de recherche importantes concernant la possibilité de détecter des textes générés automatiquement dans différents contextes. En plus de l'aspect de la recherche, des travaux d'ingénierie importants dans un environnement industriel réel sont également réalisés pour démontrer qu'il est important d'avoir une application réelle pour accompagner une recherche hypothétique. / Automatically generated text has been used in numerous occasions with distinct intentions. It can simply go from generated comments in an online discussion to a much more mischievous task, such as manipulating bibliography information. So, this thesis first introduces different methods of generating free texts that resemble a certain topic and how those texts can be used. Therefore, we try to tackle with multiple research questions. The first question is how and what is the best method to detect a fully generated document.Then, we take it one step further to address the possibility of detecting a couple of sentences or a small paragraph of automatically generated text by proposing a new method to calculate sentences similarity using their grammatical structure. The last question is how to detect an automatically generated document without any samples, this is used to address the case of a new generator or a generator that it is impossible to collect samples from.This thesis also deals with the industrial aspect of development. A simple overview of a publishing workflow from a high-profile publisher is presented. From there, an analysis is carried out to be able to best incorporate our method of detection into the production workflow.In conclusion, this thesis has shed light on multiple important research questions about the possibility of detecting automatically generated texts in different setting. Besides the researching aspect, important engineering work in a real life industrial environment is also carried out to demonstrate that it is important to have real application along with hypothetical research.
Identifer | oai:union.ndltd.org:theses.fr/2018GREAM025 |
Date | 03 April 2018 |
Creators | Nguyen, Minh Tien |
Contributors | Grenoble Alpes, Labbé, Cyril |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds