Les systèmes actuels de reconnaissance automatique de la parole (RAP) reposent sur un modèle de langue (ML) qui les aide à déterminer les hypothèses de transcription les plus probables. Pour cela, le ML recense des probabilités de courtes séquences de mots, appelées n-grammes, fondées sur un vocabulaire fini. Ces ML et vocabulaire sont estimés une fois pour toutes à partir d'un vaste corpus de textes traitant de sujets variés. En conséquence, les systèmes actuels souffrent d'un manque de spécificité lorsqu'il s'agit de transcrire des documents thématiquement marqués. Pour pallier ce problème, nous proposons un nouveau processus d'adaptation thématique non supervisée du ML et du vocabulaire. Sur la base d'une première transcription automatique d'un document audio, ce processus consiste à récupérer sur Internet des textes du même thème que le document, textes à partir desquels nous réestimons le ML et enrichissons le vocabulaire. Ces composants adaptés servent alors à produire une nouvelle transcription dont la qualité est espérée meilleure. Ce processus est particulièrement original car il se préserve de toute connaissance a priori sur les éventuels thèmes des documents à transcrire et il intègre des techniques de traitement automatique des langues. De plus, nous apportons des contributions pour chaque étape du processus. Tout d'abord, étant donnée la transcription initiale d'un document audio, nous avons aménagé le critère tf-idf , issu du domaine de la recherche d'information, aux spécificités de l'oral afin de caractériser le thème du document par des mots-clés extraits automatiquement. Via un moteur de recherche sur Internet, ces mots-clés nous permettent de récupérer des pages Web que nous filtrons afin d'assurer leur cohérence thématique avec le document audio. Ensuite, nous avons proposé une nouvelle technique de réestimation thématique du ML. En extrayant des mots et séquences de mots spécifiques au thème considéré à partir des corpora Web, nous utilisons le cadre de l'adaptation par minimum d'information discriminante pour ne modifier que les probabilités des n-grammes propres au thème, laissant les autres probabilités inchangées. Enfin, nous montrons également que les corpora extraits du Web peuvent servir à repérer des mots hors vocabulaire spécifiques aux thèmes. Nous proposons une technique originale qui permet d'apprendre ces nouveaux mots au système et, notamment, de les intégrer dans le ML en déterminant automatiquement dans quels n-grammes ils sont susceptibles d'apparaître. Pour cela, chaque nouveau mot est assimilé à d'autres, déjà connus du système, avec lesquels il partage une relation paradigmatique. Nos expériences, menées sur des émissions d'actualités radiodiffusées, montrent que l'ensemble de ces traitements aboutit à des améliorations significatives du taux de reconnaissance d'un système de RAP.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00566824 |
Date | 24 November 2010 |
Creators | Lecorvé, Gwénolé |
Publisher | INSA de Rennes |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds