Cette thèse présente une étude des propriétés des courbes de Brody, dont la plupart est motivée par des questions issues des calculs de dimension moyenne. On se positionne donc en quelque sorte à l'opposée du cadre qui leur a engendré, l'hyperbolicité des variétés complexes, où ces courbes sont plutôt rares. Dans cette voie, on montre que l'espace de courbes de Brody à valeurs dans une surface de Hopf est de dimension moyenne nulle, tandis que celles à valeurs dans certains complémentaires d'hyperplans de $P^n$ constituent un espace de dimension moyenne positive. On sera aussi amené à comprendre la distribution des valeurs pour les courbes de Brody, en retrouvant des contraintes supplémentaires que leur structure particulière induit, dans la direction d'un second théorème. / This thesis focuses on properties of Brody curves which originated on questions about mean dimension. We present therefore a point of view opposite to the setting on which they were first applied, the hyperbolicity of complex varieties, where these curves are expected to be rare. In this setting, we show that the space of Brody curves on a Hopf surface has zero mean dimension, while that of curves avoiding a small number of hyperplanes in $P^n$ have a positive one. In a second time, we'll study the value distribution theory for Brody curves, determining further constraints on their behaviour implied by their particular structure.
Identifer | oai:union.ndltd.org:theses.fr/2012PA112106 |
Date | 02 July 2012 |
Creators | Freitas Paulo da Costa, Bernardo |
Contributors | Paris 11, Duval, Julien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0039 seconds