In the hope to increase the detection rate of faults in combined heat and power plant boilers thus lowering unplanned maintenance three machine learning models are constructed and evaluated. The algorithms; k-Nearest Neighbor, One-Class Support Vector Machine, and Auto-encoder have a proven track record in research for anomaly detection, but are relatively unexplored for industrial applications such as this one due to the difficulty in collecting non-artificial labeled data in the field.The baseline versions of the k-Nearest Neighbor and Auto-encoder performed very similarly. Nevertheless, the Auto-encoder was slightly better and reached an area under the precision-recall curve (AUPRC) of 0.966 and 0.615 on the trainingand test period, respectively. However, no sufficiently good results were reached with the One-Class Support Vector Machine. The Auto-encoder was made more sophisticated to see how much performance could be increased. It was found that the AUPRC could be increased to 0.987 and 0.801 on the trainingand test period, respectively. Additionally, the model was able to detect and generate one alarm for each incident period that occurred under the test period.The conclusion is that ML can successfully be utilized to detect faults at an earlier stage and potentially circumvent otherwise costly unplanned maintenance. Nevertheless, there is still a lot of room for improvements in the model and the collection of the data. / I hopp om att öka identifieringsgraden av störningar i kraftvärmepannor och därigenom minska oplanerat underhåll konstrueras och evalueras tre maskininlärningsmodeller.Algoritmerna; k-Nearest Neighbor, One-Class Support Vector Machine, och Autoencoder har bevisad framgång inom forskning av anomalidetektion, men är relativt outforskade för industriella applikationer som denna på grund av svårigheten att samla in icke-artificiell uppmärkt data inom området.Grundversionerna av k-Nearest Neighbor och Auto-encoder presterade nästan likvärdigt. Dock var Auto-encoder-modellen lite bättre och nådde ett AUPRC-värde av 0.966 respektive 0.615 på träningsoch testperioden. Inget tillräckligt bra resultat nåddes med One-Class Support Vector Machine. Auto-encoder-modellen gjordes mer sofistikerad för att se hur mycket prestandan kunde ökas. Det visade sig att AUPRC-värdet kunde ökas till 0.987 respektive 0.801 under träningsoch testperioden. Dessutom lyckades modellen identifiera och generera ett larm vardera för alla incidenter under testperioden. Slutsatsen är att ML framgångsrikt kan användas för att identifiera störningar iett tidigare skede och därigenom potentiellt kringgå i annat fall dyra oplanerade underhåll. Emellertid finns det fortfarande mycket utrymme för förbättringar av modellen samt inom insamlingen av data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-255006 |
Date | January 2019 |
Creators | Carls, Fredrik |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2019:463 |
Page generated in 0.0024 seconds