Today communicating sensors are everywhere. There are sensors in our smart phones, in our vehicles, even in our homes. As the technology in electronics and wireless communication is developed more devices is installed all around us. The Internet connected network of physical objects is called the Internet of Things (IoT). The IoT devices send, receive and exchange data in order to control, monitor and optimize. The possible appliances for IoT spans industries, healthcare, cities, airports, and much more. This project targets the current state of IoT, how the development of IoT might affect building services engineering and possible future IoT appliances in buildings. The main appliances of IoT in buildings are energy saving procedures, maintenance improvements, chore automation and security enhancements. Energy saving in buildings has been a hot topic for many years due to global warming. IoT offers the possibility to reduce greenhouse gases, not only locally but also on a grander scheme. This project investigate possible energy savings by assuming that IoT can create an optimal ventilation and heating schedules. The analysis is carried out by simulating energy consumption in an apartment building using IDA ICE. The apartment building used as a reference model is located in Lycksele, Sweden. The result shows a modest energy saving of 100 kWh/apartment for heating and 250 kWh/apartment for ventilation optimization. The conclusion is that energy saving potential of IoT lies in interoperability between devices and the possibility to find correlations between data, not in individual optimizations. The main focus of IoT today in the building sector is to assist facility management with supervision of real estate. Sensors that send information about the state of devices decreases the supervision time of operating technicians. It's fundamental for facility management companies to cooperate with building engineering companies in order to avoid a constant change of batteries in IoT devices installed in buildings. By settle necessary power connections during the construction phase of a building the need for batteries is limited.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-136002 |
Date | January 2017 |
Creators | Ringvall, Robert |
Publisher | Umeå universitet, Institutionen för tillämpad fysik och elektronik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds