Two different iron oxide nanofluids were tested for heat transfer properties in industrial cooling systems. The nanofluids either had 30 nm particles with a wide size distribution to include particles greater than 1 micrometer or 15 nm particles with greater than 95% of the particles less than 33 nm. Calorimetry and thermal circuit modeling indicate that the 15 nm particle ferrofluid enhanced heat capacity. The smaller particle ferrofluid also demonstrated up to a 39% improvement in heat transfer, while the larger particle ferrofluid degraded the heat transfer performance. Particles from the larger particle ferrofluid were noted as settling out of a circulating system and therefore not participating in the bulk fluid properties. Application of 0.32% 15nm particles in an open cooling system improved cooling tower efficiency by 7.7% at a flow rate of 11.4 liter per minute and improved cooling tower efficiency by 3.3% at a flow rate of 22.7 liter per minute, while applying 0.53% 15 nm particles also improved cooling tower efficiency but was less effective than the lower concentration.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1424 |
Date | 07 September 2012 |
Creators | Stuart, Dale |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0022 seconds