• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development and characterisation of enhanced hybrid solar photovoltaic thermal systems

Allan, James January 2015 (has links)
A photovoltaic thermal solar collector (PVT) produces both heat and electricity from a single panel. PVT collectors produce more energy, for a given area, than conventional electricity and heat producing panels, which means they are a promising technology for applications with limited space, such as building integration. This work has been broken down into 3 subprojects focusing on the development of PVT technology. In the first subproject an experimental testing facility was constructed to characterise the performance of PVT collectors. The collectors under investigation were assembled by combining bespoke thermal absorbers and PV laminates. Of the two designs tested, the serpentine design had the highest combined efficiency of 61% with an 8% electrical fraction. The header riser design had a combined efficiency of 59% with an electrical fraction of 8%. This was in agreement with other results published in literature and highlights the potential for manufacturers of bespoke thermal absorbers and PV devices to combine their products into a single PVT device that could achieve improved efficiency over a given roof area. In the second project a numerical approach using computational fluid dynamics was developed to simulate the performance of a solar thermal collector. Thermal efficiency curves were simulated and the heat removal factor and heat loss coefficient differed from the experimental measurements by a maximum of 12.1% and 2.9% respectively. The discrepancies in the findings is attributed to uncertainty in the degree of thermal contact between the absorber and the piping. Despite not perfectly matching the experimental results, the CFD approach also served as a useful tool to carry out performance comparisons of different collector designs and flow conditions. The effect of 5 different flow configurations for a header collector was investigated. It was found that the most efficient design had uniform flow through the pipe work which was in agreement with other studies. The temperature induced voltage mismatch, that occurs in the PV cells of PVT collector was also investigated. It was concluded that the temperature variation was not limiting and the way in which PV cells are wired together on the surface of a PVT collector did not influence the combined electrical power output.
2

Heat Transfer Enhancement using Iron Oxide Nanoparticles

Stuart, Dale 07 September 2012 (has links)
Two different iron oxide nanofluids were tested for heat transfer properties in industrial cooling systems. The nanofluids either had 30 nm particles with a wide size distribution to include particles greater than 1 micrometer or 15 nm particles with greater than 95% of the particles less than 33 nm. Calorimetry and thermal circuit modeling indicate that the 15 nm particle ferrofluid enhanced heat capacity. The smaller particle ferrofluid also demonstrated up to a 39% improvement in heat transfer, while the larger particle ferrofluid degraded the heat transfer performance. Particles from the larger particle ferrofluid were noted as settling out of a circulating system and therefore not participating in the bulk fluid properties. Application of 0.32% 15nm particles in an open cooling system improved cooling tower efficiency by 7.7% at a flow rate of 11.4 liter per minute and improved cooling tower efficiency by 3.3% at a flow rate of 22.7 liter per minute, while applying 0.53% 15 nm particles also improved cooling tower efficiency but was less effective than the lower concentration.
3

Study Thermal Property of Stereolithography 3D Printed Multiwalled Carbon Nanotubes Filled Polymer Nanocomposite

January 2020 (has links)
abstract: Traditionally, for applications that require heat transfer (e.g. heat exchangers),metals have been the go-to material for manufacturers because of their high thermal as well as structural properties. However, metals have some notable drawbacks. They are not corrosion-resistant, offer no freedom of design, have a high cost of production, and sourcing the material itself. Even though polymers on their own don’t show great prospects in the field of thermal applications, their composites perform better than their counterparts. Nanofillers, when added to a polymer matrix not only increase their structural strength but also their thermal performance. This work aims to tackle two of those problems by using the additive manufacturing method, stereolithography to solve the problem of design freedom, and the use of polymer nanocomposite material for corrosion-resistance and increase their overall thermal performance. In this work, three different concentrations of polymer composite materials were studied: 0.25 wt%, 0.5 wt%, and 1wt% for their thermal conductivity. The samples were prepared by magnetically stirring them for a period of 10 to 24 hours depending on their concentrations and then sonicating in an ice bath further for a period of 2 to 3 hours. These samples were then tested for their thermal conductivities using a Hot Disk TPS 2500S. Scanning Electron Microscope (SEM) to study the dispersion of the nanoparticles in the matrix. Different theoretical models were studied and used to compare experimental data to the predicted values of effective thermal conductivity. An increase of 7.9 % in thermal conductivity of the composite material was recorded for just 1 wt% addition of multiwalled carbon nanotubes (MWCNTs). / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2020
4

Příprava keramických materiálů se zvýšenou tepelnou vodivostí pro jaderné aplikace / Design of nuclear ceramic materials with enhanced thermal conductivity

Roleček, Jakub January 2014 (has links)
Oxid uraničitý (UO2) je v současnosti nejčastěji používaným materiálem jakožto palivo v komerčních jaderných reaktorech. Největší nevýhodou UO2 je jeho velmi nízká tepelná vodivost, a protože se při štěpení UO2 v jaderném reaktoru vytváří velké množství tepla, vzniká v UO2 peletě velký teplotní gradient. Tento teplotní gradient způsobuje vznik velkého tepelného napětí uvnitř pelety, což následně vede k tvorbě trhlin. Tyto trhliny napomáhají k šíření štěpných plynů při vysoké míře vyhoření paliva. Tvorba trhlin a zvýšený vývin štěpného plynu posléze vede ke značnému snížení odolnosti jaderného paliva. Tato práce se zabývá problematikou zvyšování tepelné vodivosti jaderného paliva na modelu materiálu (CeO2). V této práci jsou studovány podobnosti chování CeO2 a UO2 při konvenčním slinováním a při „spark plasma sintering.“ Způsob jak zvýšit tepelnou vodivost použitý v této práci je včlenění vysoce tepelně vodivého materiálu, karbidu křemíku (SiC), do struktury CeO2 pelet. Od karbidu křemíku je očekáváno, že zvýší tok tepla z jádra pelety, a tím zvýší tepelnou vodivost CeO2. V této práci je také porovnávána podobnost chování SiC v CeO2 matrici s chováním SiC v UO2, které bylo popsáno v literatuře.
5

Etude du comportement thermique d'une batterie électrochimique thermorégulée par matériaux à changement de phase pour le véhicule électrique / Study of the thermal behavior of an electrochemical battery thermoregulated by phase change materials for electric vehicles

Ianniciello, Lucia 22 June 2018 (has links)
La gestion thermique des batteries Li-ion pour le véhicule électrique est essentielle, pour assurer une autonomie et une durée de vie optimales de ces batteries. Habituellement, des circuits d'air ou de liquide de refroidissement sont utilisés comme systèmes de gestion thermique. Cependant, ces systèmes sont coûteux en termes d'investissement et d'exploitation et doivent être dimensionnés sur la puissance maximale à extraire. L'utilisation de matériaux à changement de phase (MCP) pour l’absorption sous forme de chaleur latente de la chaleur à dissiper peut représenter une alternative moins coûteuse et plus facile à utiliser. En effet, les MCP peuvent stocker passivement la chaleur excédentaire produite et être utilisés en tant que systèmes passifs. Cependant, les MCP présentent de nombreux inconvénients comme la difficulté de décharger l’énergie thermique stockée, ce qui limite l’aptitude du système au cyclage, ou encore leur conductivité thermique peu élevée qui limite les capacités d’échange. Pour résoudre le problème de la régénération des MCP, un système actif supplémentaire peut être ajouté, dimensionné sur une puissance modérée; l'ensemble devient alors un système semi-passif. Dans cette étude, un système de gestion thermique composé d'un MCP et d’air en convection forcée est évalué. Ce système permet de coupler les avantages de ces deux techniques. Une modélisation du système est développée pour une cellule de batterie. Une comparaison avec de l’air uniquement, en convection forcée, montre l'utilité du MCP. Pour augmenter la capacité d’échange du MCP, un matériau à haute conductivité thermique peut être ajouté au MCP, ce qui permet d’obtenir un composite ayant une conductivité thermique plus élevée. Des composites basés sur les MCP étudiés et des nanostructures de carbone sont élaborés, leur conductivité thermique est mesurée. Ensuite, un système expérimental simulant la dissipation d’une cellule de batterie est construit et utilisé pour évaluer le MCP seul, le MCP inclus dans une mousse métallique et le meilleur composite obtenu. Enfin, pour se rapprocher des conditions réelles, un modèle représentant un stack entier de batterie est développé, des simulations sont produites et les résultats obtenus sont commentés. / Li-ion battery thermal management is essential for electric vehicles (EVs), to ensure an optimal autonomy and lifespan of those batteries. Usually, air or coolant circuits are employed as thermal management systems. However, those systems are expensive in terms of investment and operating costs and must be dimensioned on the maximal power to be extracted. The use of phase change materials (PCMs) as latent heat storage medium allowing the absorption of the heat to be dissipated as latent heat may represent an alternative cheaper and easier to operate. In fact, PCMs can passively store the excess heat produced by a device and be used as passive systems. However, PCMs have several drawbacks like the difficulty to discharge the stored thermal load which limits the system’s cyclability or their low thermal conductivity which limits their heat transfer capacity. To solve the problem of the PCM regeneration, an additional active system can be added, dimensioned on a moderate power; the whole becomes a semi-passive system. In this study, a thermal management system composed of a PCM and forced air convection is evaluated. This system permits to combine the respective advantages of the two techniques. A model of the system is developed for one battery cell. A comparison with forced air convection only points out the usefulness of the PCM. To overcome the PCM low thermal conductivity, a highly conductive material can be added to the PCM permitting to obtain a composite with a higher thermal conductivity. Composites based on the PCMs studied and carbon nanostructures are elaborated, and their thermal conductivity is measured. Then, an experimental system permitting to simulate the dissipation of a battery cell is build and used to evaluate the PCM alone, the PCM embedded in metal foam and the better obtained composite. Finally, to be closer to the real conditions, a model representing an entire battery stack is developed, simulations are produced and the obtained results are discussed.

Page generated in 0.0988 seconds