Return to search

Techno-Economic Analysis of Solar Photovoltaic and Heat Pump Systems for a North Macedonian Hospital

The International Energy Agency’s Global Status Report 2017 estimates that existing buildings must undergo deep energy renovations, which reduce the energy intensity of buildings by 50% - 70% in order to achieve the “Beyond 2°C” scenario [1]. Many buildings in Bitola, The Republic of North Macedonia, will need considerable upgrades to meet these goals. Among them, health care facilities and education centers have the greatest potential, with energy savings that could reach 35 to 40% [2]. PHI Clinical Hospital Bitola is the largest health care facility in the southwestern region of North Macedonia with a capacity of 500 beds, providing care to almost 300.000 patients annually. It has a heating system based on heavy fuel oil, and an inefficient distribution system which has not been upgraded since the 1970s. There is no centralized ventilation or cooling systems, making it necessary to open and close windows in order to regulate the indoor temperature and generate natural ventilation. This study aims to replace the use of heavy fuel oil (HFO), reduce building related GHG emissions, and increase the primary renewable energy fraction of PHI Clinical Hospital Bitola, by investigating a replacement energy system using heat pumps and solar energy. Special consideration is given to increasing the level of comfort of patients and improving the safety of the indoor environment. Space conditioning, domestic hot water, and electricity demands for three critical buildings are considered in Polysun over a 1-year period. The costs and benefits of technologies including air and ground source heat pumps, solar photovoltaics, and ice thermal energy storage are analyzed. It is determined which of these technologies can be implemented in an energy and cost-efficient manner in the Republic of North Macedonia, thus contributing to the reduction of building related greenhouse gas emissions and other pollutants that contribute to poor air quality. Ground source heat pumps perform superior to air source heat pumps, however, the total life cycle costs of ground source heat pump systems are much higher than air source heat pump systems, making the marginal gains in the technical performance not worth the investment in a borehole field. When using ice thermal energy storage within the cooling and domestic hot water systems the benefits of improved heat pump performance and reduced electricity consumption are not observed. The configuration of thermal storage tested here uses the domestic hot water system to withdraw heat from the thermal storage tank, creating ice, which is then used to decrease the need for cooling using the chiller. However, the cooling load is much larger than the hot water demand, and so any ice generated in the tank is depleted within the first few days of cooling. Many other configurations and control strategies for thermal storage exist which could be the subject of further research. When selecting a renewable energy system that could replace the current HFO boiler in the hospital, the results of this study suggest that an air source heat pump system with solar PV is the recommended solution. For buildings 1 and 2, the final results achieved a primary renewable energy fraction of 62%, a GHG emissions savings of 840 tons of CO2eq equating to a 26% reduction, coming at a capital cost of nearly 2,7 million €, and reducing annual energy expenses by 47%. For building 4 the final system delivers a primary renewable energy fraction of 64%, GHG emissions savings of 109 tons CO2eq or 17%, while costing 0,67 million € in capital expenses and lowering annual energy expenses by 50%. / Den internationella energi byråns globala status rapport 2017 uppskattar att existerande byggnader måste undergå djupgående energi renovationer, som ska reducera byggnadernas energiintensitet med 50% - 70% för att uppnå i scenariot “Beyond 2°C” [1]. Många byggnader i Bitola (Republiken av nora Makedonien), kommer att behöva betydande uppgraderingar för att uppfylla dessa mål. Bland dem har hälsovårdsanläggningar och utbildningscenter den största potentialen, med energi besparingar där dessa kan uppnå 35% till 40% [2]. PHI Kliniskt Sjukhus Bitola är den största sjukvårdsanläggningen i den sydvästra regionen av Nora Makedonien med en kapacitet på 500 sängplatser, som ger vård till nästan 300.000 patienter årligen. Det nuvarande värmesystemet är baserat på tung eldningsolja och ett ineffektivt distributionssystem som inte har uppdaterats sedan 1970-talet. Det finns inga centraliserade ventilations- och kylsystem, vilket gör det nödvändigt att öppna och stänga fönster för att reglera inomhustemperaturen och generera naturlig ventilation. Denna studie syftar till att ersätta användningen av tung eldningsolja, minska byggnadsrelaterade växthusutsläpp och öka den primära förnyelsebara energifraktionen av Kliniskt Sjukhus Bitola. Genom att undersöksöka ett ersättande energisystem med värmepumpar och solenergi. Särskild hänsyn tas till öka patienternas komfort och förbättra säkerheten i inomhusmiljön. Värme och kyla, varmvatten och el-krav för tre kritiska byggnader betraktas i Polysun under en 1- års period. Kostnaderna och fördelarna med tekniken inklusive luft och markvärmepumpar, solceller och termisk energilagring analyseras. Det fastställs vilken av dessa tekniker som kan implementeras på ett energi- och kostnadseffektivt sätt i Republiken av nora Makedonien, vilket bidrar till att minska byggnadsrelaterade växthusgasutsläpp och andra föroreningar som kan bidra till dålig luftkvalitet. Markvärmepumpar har högre prestanda än luftvärmepumpar, men de totala livscykelkostnaderna för ett markvärmepumpsystem är mycket högre än för ett luftvärmepumpsystem. Vilket gör den marginella vinsterna för den tekniska prestandan inte värda investeringen av ett borrhåls fält. Vid användning av is som termisk energilagring och kylning och varmvattensanläggningar, tog ingen hänsyn till fördelarna med en förbättrad värmepumps prestanda och minskad elförbrukning. Konfigurationen av termisk lagring som testas här använder det inhemska varmvattensystemet för att ta bort värme från den termiska lagringstanken, vilket skapar is som sedan används för att minska behovet av nedkylning av byggnaden. Kylbelastningen är emellertid mycket större än varmvattenbehovet. Vilket betyder att all is som genereras i tanken används upp efter några dagar av kylning. Många andra konfigurationer och styrstrategier för termisk lagring finns och kan vara till ändamål för framtida forskning. När val av ett förnybart energisystem görs som ska kunna ersätta den nuvarande tung eldningsolja pannan på sjukhuset antyder resultatet av denna studie att ett värmepumpsystem med luftkälla och sol-PV är den rekommenderade lösningen. För byggnad 1 och 2 uppnådde det slutliga resultatet en primär förnyelsebar energifraktion på 62%, vilket skulle innebära en besparing av växthusgasutsläpp med 840 ton CO2 ekvivalenter. Vilket motsvarar en minskning med 26%, med en kapitalkostnad på nästan 2,7 miljoner €. Samt minskade årliga energikostnader med 47%. För byggnad 4 levererar det slutliga systemet en primär förnybar energifraktion på 64%, med en -5- besparing av växthusutsläpp på 109 ton CO2 ekvivalenter eller 17%. Medan det kostar 0,67 miljoner € i kapitalutgifter och sänker den årliga energikostnaden med 50%.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-264241
Date January 2019
CreatorsBeltran, Francisco, Fisher, Lesley
PublisherKTH, Skolan för industriell teknik och management (ITM)
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2019:667

Page generated in 0.0114 seconds