It has been known that a significant part of the thermal budget of an electronic package is occupied by the thermal interface material which is used to join different materials. Research in reducing this resistance through the use of vertically aligned multiwall carbon nanotube based thermal interface materials is presented. Transferred arrays anchored to substrates using thermal conductive adhesive and solder was analyzed through a steady-state infrared measurement technique. The thermal performance of the arrays as characterized through the measurement system is shown to be comparable and better than currently available interface material alternatives. Furthermore, a developed parametric model of the thermal conductive adhesive anchoring scheme demonstrates even greater potential for improved thermal resistances. Additionally, a developed transient infrared measurement system based on single point high speed temperature measurements and full temperature mappings is shown to give increased information into the thermophysical properties of a multilayer sample than other steady-state techniques.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/50386 |
Date | 13 January 2014 |
Creators | McNamara, Andrew J. |
Contributors | Joshi, Yogendra, Zhang, Zhuomin |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0027 seconds