Return to search

Thermal Property Determination Using Optimization of One-side Known Radiant Exposure

Structural applications, including aircraft, ships, and offshore oil drilling platforms, have witnessed a surge in composite material usage. However, exposure to elevated temperatures poses a significant risk to these materials, especially in scenarios such as fires and high-temperature exhaust gas impingement. Despite limited or no visible damage, composite properties can undergo significant degradation, leading to potential in-service failures and jeopardizing operational safety and integrity.
It was previously determined that the accuracy of the equipment and methodology used for measuring elevated temperature thermal properties, particularly in predicting composite material thermal properties could not meet the necessary precision. Using an inverse analysis technique to solve for the thermal conductivity and specific heat capacity, the thermal properties of composite materials can be determined. These thermal properties can then be used in a rapid heat damage assessment and failure prediction tool that can be updated based on additional data provided during inspection which takes into account material state changes and damage development due to the elevated temperature exposure and provides a way to incorporate those changes into subsequent structural analyses. / Master of Science / Composite materials are great for structural usage in a wide variety of endeavors. The problem with them is that when exposed to high temperatures, the composite materials properties can change. This can cause failures from seemingly good material which can cause serious bodily harm or even death. My research aims to help bolster the safety and integrity of composite material structures by providing a reliable way to determine their thermal properties. With the thermal properties known, development of a tool that can predict composite material failures which can take into account changes in the material due to thermal damage.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/119269
Date04 June 2024
CreatorsShorten, Brock Alexander
ContributorsMechanical Engineering, Lattimer, Brian Y., Case, Scott W., Meadows, Joseph
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds