Return to search

Optimization of thermal response test equipment and evaluation tools

Nowadays Ground Source Heat Pumps (GSHP) are widely used to provide heating and/or cooling as well as domestic hot water in commercial and residential buildings. The Swedish GSHPs market is the first one in the European Union with more than 378,000 units installed until 2010 according to the Swedish Heat Pump Association (SVEP). This thesis focuses on the improvement of a Thermal Response Test (TRT) apparatus available at KTH Royal Institute of Technology – Energy Technology Department. This equipment aims at improving Borehole Heat Exchanger (BHE) design in terms of size. Its key purpose is to evaluate two main BHE properties: the ground thermal conductivity and the borehole thermal resistance. A new command software is developed in order to control the TRT equipment and run TRT measurements. This new software is developed using Python as programming language and replaces an older program which needed LabVIEW to run. The TRT command software designed in this thesis provides the user with a simple and user-friendly interface to control each device of the equipment. Measurements are exported and saved to files which can be open with both Microsoft Excel and the analysis tool also developed in this thesis. The stand-alone evaluation tool can be used to analyse TRT and/or DTRT measurements. This analysis tool helps the user to compute large amount of data with few data manipulation and low computation time. Model parameters and TRT/DTRT measurement can be imported from files into it and different fitting settings are available to run the optimization, i.e. account for baseline variations (early activities in the borehole, different optimization periods, analysis during thermal recovery of the ground, single/multi-sectional analysis along the depth, among others). This report covers a theoretical description of TRT experiments and its models, the objectives of such a project and the development of the control and evaluation tools.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-147764
Date January 2014
CreatorsSimondon, Camille
PublisherKTH, Tillämpad termodynamik och kylteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds