Return to search

In-situ Electrochemical Surface Engineering in Additively Manufactured CoCrMo for Enhanced Biocompatibility

Laser-based additive manufacturing is inherently associated with extreme, unprecedented, and rapid thermokinetics which impact the microstructural evolution in a built component. Such a unique, near to non-equilibrium microstructure/phase evolution in laser additively manufactured metallic components impact their properties in engineering application. In light of this, the present work investigates the unique microstructural traits as a result of process induced spatial and temporal variation in thermokinetic parameters in laser directed energy deposited CoCrMo biomedical alloy. The influence of such a unique microstructural evolution in laser directed energy deposited CoCrMo on electrochemical response in physiological media was elucidated and compared with a conventionally manufactured, commercially available CoCrMo component. Furthermore, while investigation of the electrochemical response, such a microstructural evolution in laser directed energy deposited CoCrMo led to in-situ surface modification of the built components in physiological media via selective, non-uniform electrochemical etching. Such in-situ surface modification resulted in enhanced biocompatibility in terms of mammalian cell growth, cell-substrate adhesion, blood compatibility, and antibacterial properties indicating improved osteointegration, compared to a conventionally manufactured, commercially available CoCrMo component.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2137621
Date05 1900
CreatorsMazumder, Sangram
ContributorsDahotre, Narendra B., Yang, Yong, Siller, Hector R., Banerjee, Rajarshi, Mukherjee, Sundeep, Voevodin, Andrey
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Mazumder, Sangram, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0024 seconds