Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: This research considered the automated remote sensing-based classification of wetland extent within the Nuwejaars and Heuningnes River systems on the Agulhas Plain. The classification process was based on meaningful image objects created through image segmentation rather than on single pixels. An expert system classifier was compared to a nearest-neighbour supervised classifier, and one multispectral (SPOT 5) image (dry season) and two C-band, VV-polarisation synthetic aperture radar (SAR: ERS-2) images (dry and wet season) were used separately and in combination.
Classifications were performed within two subset areas. Final classes identified were Permanent waterbody, Other wetland and Non-wetland. Statistical accuracy assessment was performed. Validation data was derived from a combination of high-resolution aerial photographs, the SPOT 5 image, high-resolution imagery on Google Earth and observations during a field visit. Wetland extent was defined as the total extent of wetland-specific vegetation, unvegetated seasonal pans and waterbodies. More detailed classes were originally envisaged, but available validation data was not considered adequate for assessing their accuracy with any confidence.
The supervised classifier was found to be more accurate overall than the developed expert system. The difference between the two was however not always significant. The two SAR images alone did not contain sufficient information for the accurate classification of Agulhas wetlands’ extent, with recorded overall accuracies not exceeding 65% regardless of the classifier used. The SPOT image alone achieved accuracies higher than 80%; this was considered a good result. In comparison, combining the SAR and SPOT data did not improve the classification accuracy.
The potential of the expert system to be applied with little modification to images acquired over other areas or over the same area in other years should be further investigated. However, several reservations are noted in this regard. Future research could potentially improve the results obtained from supervised classification by augmenting it with expert system rules to identify more complicated classes.
KEYWORDS
ERS-2, SPOT 5, SAR, wetlands, expert system classifier, nearest-neighbour supervised classifier / AFRIKAANSE OPSOMMING: Hierdie navorsing het die geoutomatiseerde afstandswaarneminggebaseerde klassifikasie van vleilandomvang binne die Nuwejaars- en Heuningnesrivier stelsels op die Agulhasvlakte ondersoek. Die klassifikasieproses was gebaseer op betekenisvolle beeldobjekte geskep deur middel van beeldsegmentasie eerder as op enkele beeldelemente. ‘n Deskundige stelsel klassifiseerder is vergelyk met ‘n naaste-naburige gerigte klassifiseerder. Een multispektrale (SPOT 5) beeld vir die droë seisoen, sowel as twee C-band, VV-polarisasie sintetiese diafragma radar (SAR, ERS2) beelde (vir die droë en nat seisoene) is afsonderlik en in kombinasie gebruik.
Klassifikasies is uitgevoer binne twee sub-areas in die beelde. Finale klasse wat geïdentifiseer is was Permanente waterliggaam, Ander vleiland en Nie-vleiland. Statistiese akkuraatheidsassessering is uitgevoer. Verwysingsdata is geskep vanuit ‘n kombinasie van hoë- resolusie lugfoto’s, die SPOT 5 beeld, hoë-resolusie beelde op Google Earth en waarnemings tydens ‘n besoek aan die studiegebied. Vleiland omvang is gedefinieer as die totale omvang van vleiland-spesifieke plantegroei, onbegroeide seisoenale panne en waterliggame.
Die gerigte klassifiseerder blyk om oor die algemeen meer akkuraat as die ontwikkelde deskundige stelsel te wees. Die verskil was egter nie altyd beduidend nie. Die twee SAR beelde alleen het nie genoegsame inligting bevat vir die akkurate klassifikasie van Agulhas-vleilande se omvang nie, met behaalde algehele akkuraatheidsvlakke wat nie 65% oorskry het nie, ongeag van die klassifiseerder. Die SPOT-beeld alleenlik het algehele akkuraathede van meer as 80% behaal; wat as ‘n goeie resultaat beskou kan word. In vergelyking hiermee kon die kombinering van SAR- en SPOT-data nie ‘n verbetering teweeg bring nie.
Die potensiaal van die deskundige stelsel om met min aanpassing op beelde van ander gebiede of van dieselfde gebied in ander jare toegepas te word, verg verdere ondersoek. Verskeie voorbehoude word egter in hierdie verband gemeld. Toekomstige navorsing kan potensieel die resultate van gerigte klassifikasie verbeter deur dit aan te vul met deskundige stelsel reëls vir die klassifikasie van meer komplekse klasse.
TREFWOORDE
ERS-2, SPOT 5, SAR, vleilande, deskundige stelsel klassifiseerder, naaste-naburige gerigte klassifiseerder.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/71906 |
Date | 12 1900 |
Creators | Pauw, Theo |
Contributors | Van Niekerk, Adriaan, Stellenbosch University. Faculty of Science. Dept. of Geography and Environmental Studies. |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Detected Language | Unknown |
Type | Thesis |
Format | 120 p. : ill., maps |
Rights | Stellenbosch University |
Page generated in 0.0024 seconds