Return to search

Synthesis of CdZnS by Chemical Bath Deposition for Thin Film Solar Cells

The buffer layer is a crucial component in thin film solar cells. Defects at the interface between absorber and buffer layer lead to high recombination rate and the band structure at the interface highly affects the performance of the solar cell. In this thesis a method to synthesize thin films containing cadmium, zinc and sulfur, CdZnS, by chemical bath deposition has been developed and evaluated. A higher current from the device is expected when replacing the common buffer layer cadmium sulfide, CdS, with the more transparent CdZnS. It is also possible that the alternative buffer provides a more favorable energy band alignment at the interface with the absorber Copper-Zinc-Tin-Sulfide (CZTS). The deposition process was developed by studying depositions on glass. Increasing [Zn2+]/[Cd2+] initially led to films with higher band gap (Eg). By varying deposition time the time before colloidal growth became dominant was observed. Addition of triethanolamine showed that triethanolamine binds stronger to zinc ions than to cadmium ions. Two recipes that led to Eg=2.63 eV were evaluated as buffer layer in Copper-Indium-Gallium-Selenide (CIGSe) and CZTS solar cells. The short circuit current of the devices increased in general with the CdZnS buffers compared to CdS. The best CZTS cell with a CdZnS buffer layer had 7.7 % efficiency compared to the 7.5 % reference. For future research it is recommended that the effect of thickness variation and deposition temperature is evaluated and that additional material characterization is performed in order to further understand and develop the deposition method.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-324899
Date January 2017
CreatorsFjällström, Emil
PublisherUppsala universitet, Fasta tillståndets elektronik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC K, 1650-8297 ; 17014

Page generated in 0.0016 seconds