Return to search

Sur les stratifications réelles et analytiques complexes (a) - régulières de Whitney et Thom / On Whitney (a) and Thom regular real and complex analytic stratifications.

En 1979, Trotman a démontré que les stratifications réelles lisses qui satisfont la condition de (a)-régularité sont précisément celles pour lesquelles la transversalité aux strates des applications est une condition stable dans la topologie forte. C'était un résultat surprenant puisque la (t)-régularité semblait être plus appropriée pour la stabilité de la transversalité, une erreur qui a été faite dans plusieurs articles avant que ce résultat soit montré par Trotman. Notre premier résultat est un analogue au résultat de Trotman pour la topologie faible.Il y a une dizaine d'années Trotman a demandé si le même résultat est valable pour les stratifications analytiques complexes. Dans ce travail on démontre un analogue du résultat de Trotman dans le cas complexe, en utilisant la notion de variété de Oka introduite par Forstneric et on montre que la conjecture n'est pas vraie en général en donnant des contre-exemples.Dans sa thèse, Trotman a formulé une conjecture pour généraliser son résultat pour les stratifications (a_f)-régulières de Thom. Dans une tentative de résolution de cette conjecture on a observé que la transversalité par rapport à un feuilletage est une condition stable, cependant ce n'est pas une condition générique. Donc, en voulant imiter la preuve de Trotman on ne pourra pas obtenir cette généralisation. Néanmoins, on donne ici une preuve de cette conjecture. Ce résultat peut être résumé en disant que les (a_f)-défauts dans une stratification peuvent être détectés en perturbant les applications transverses au feuilletage induit par f. Certaines techniques pour détecter (a_f)-défauts sont aussi données vers la fin. / Trotman in 1979 proved that real smooth stratifications which satisfy the condition of $(a)$-regularity are precisely those stratifications for which transversality to the strata of smooth mappings is a stable condition in the strong topology. This was a surprising result since $(t)$-regularity seemed to be more appropriate for stability of transversality, a mistake that was made in several articles before this result of Trotman. Our first result is an analogue of this result of Trotman for the weak topology.Trotman asked more than ten years ago whether a similar result holds for complex analytic stratifications. We will give an analogue of Trotman's result in the complex setting using Forstneriv c's notion of Oka manifolds and show that the result is not true in general by giving counterexamples.In his Ph.D. thesis Trotman conjectured a generalization of his result for Thom $(a_f)$-regular stratifications. In an attempt to prove this conjecture we noticed that while transversality to a foliation is a stable condition, it is not generic in general. Thus, mimicking the proof of the result of Trotman would not suffice to obtain this generalization. Nevertheless, we will present a proof of this conjecture in this work. This result can be summarized by saying that Thom $(a_f)$-faults in a stratification can be detected by perturbation of maps transverse to the foliation induced by $f$. Some other techniques of detecting $(a_f)$-faults are also given towards the end.

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4719
Date17 June 2013
CreatorsTrivedi, Saurabh
ContributorsAix-Marseille, Trotman, David
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds