Return to search

Computational analysis of alternative aortic bypass for left ventricle assistant device (LVAD)

ABSTRACT Left Ventricular Assistant Devices (LVAD's) have been routinely used to treat patients with heart failure, and to help bridge patients awaiting heart transplant surgery. A major problem with LVAD's is their tendency to stimulate the formation of blood clots that can cause serious conditions such as strokes, thrombosis, and even death. A study on an alternative aortic bypass for patients with LVAD implants as a mean to reduce the number of thrombi that eventually flow into the carotid arteries by promoting them to flow into the subclavian arteries and descending aorta is presented. The study consists of Computational Fluid Dynamics (CFD) models for standard and alternative aortic bypass L V AD configurations. Results show that thrombi with diameters in the range of 2mm to 5mm have the highest chance of flowing into the carotid arteries from the aortic arch. The CFD study of the alternative aortic bypass implementation shows an increase in the number of thrombi that flow out of the aortic arch to the descending aorta by 4.65% for 0.5mm diameter, 11.63% for 2mm diameter, 37.21 % for 3mm diameter, and 9.3% for 5mm diameter thrombi.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-1798
Date01 January 2008
CreatorsOsorio, Andres F.
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
SourceHIM 1990-2015

Page generated in 0.0021 seconds