Return to search

Sedimentation Patterns and Hydrodynamics of a Wave-Dominated Tidal Inlet: Blind Pass, Florida

Blind Pass, a heavily structured wave-dominated tidal inlet on the west central coast of Florida, has undergone substantial morphologic changes in the past 150 years. Initially Blind Pass was a mixed-energy inlet. In 1848 a hurricane opened a new inlet to the north called Johns Pass, which captured a large portion of the tidal prism of Blind Pass. Since then Blind Pass migrated southward until it was structurally stabilized in 1937. The decreasing tidal prism resulted in significant inlet channel filling. The channel has been dredged 12 times since 1937. The present inlet is stabilized by two jetties and a series of seawalls.
Detailed time-series field measurements of bathymetry and tidal flows were conducted between 2001 and 2004, after the last channel dredging in the summer of 2000. The measured depositional rate in the inlet channel approximately equals the net southward longshore transport rate. This suggests that the inlet has served as a trap for the southward longshore transport allowing negligible bypassing to the eroding downdrift beach. Most of the active sedimentation occurs on the northern side of the inlet. The sediment in the thalweg is largely coarse shell lag, indicating adequate sediment flushing by the ebbing tide. The cross-channel flow measurements revealed that ebb flow was approximately twice as high in the channel thalweg as compared with the rest of the channel. The flood flow was largely uniform across the entire inlet and dominated over the northern portion of the inlet due to the weak ebb flow there. This cross-channel flow pattern is crucial to the understanding of the sedimentation patterns in the Blind Pass channel. Two years after the last dredging the mouth has become shallow enough to induce wave breaking across the shoal area. Distinctive seasonal patterns of sedimentation were measured thereafter in the inlet channel, influenced by seasonal wave climate. The sedimentation is event driven from passage of cold fronts bringing elevated wave energy that accelerates the southward longshore transport. During normal conditions the sediment deposited in the mouth area is redistributed further into the inlet by the flood current combined with wave-driven current.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-1884
Date12 April 2005
CreatorsTidwell, David K
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0018 seconds