ABSTRACT Assessing the impact of herbivory on plant growth and reproduction is important to predict the success of biocontrol of invasive plants. Leaf area production is most important, as photosynthesis provides the foundation for all plant growth and fitness. High levels of defoliation generally reduce the productivity of plants. However, leaf area production fluctuates during the season and compensational growth may occur, which both complicate accurate estimations of defoliation impacts. Under field conditions the interaction with neighbouring species and the availability of soil nutrients need to be assessed in order to gauge long term effects of weed invasions on natural environments. In this thesis I have investigated seasonal leaf area dynamics in Buddleia davidii following repeated artificial defoliation, to quantify compensational leaf production and to understand the regulatory mechanisms involved. The impact of defoliation on photosynthesis, seed production, germination and nitrogen translocation patterns were analysed. Finally, possible facilitation between B. davidii and a native nitrogen fixer, Coriaria arborea, and the impact of B. davidii on soil nutrient availability were investigated. In defoliated B. davidii, increased node production (34%), leaf size (35%) and leaf longevity (12%) resulted in 52% greater total emergent leaf area in the short term. However, with time and diminishing tissue resources the compensation declined. No upregulation of photosynthesis was observed in pre-existing leaves. Compensational leaf area production occurred at the expense of reproduction but the germination capacity of individual seeds was unaffected. In B. davidii, nitrogen reserves are stored in old leaves. Thus, the defoliation-induced decline in tissue reserves led to changes in the remobilisation pattern and increased the importance of soil uptake but biomass production especially that of roots had declined significantly (39%). Slight facilitation effects from the neighbouring nitrogen fixer and VA-mycorrhizae were observed on B. davidii in the field, while its impact on soil chemistry during spring was negligible. Defoliation of B. davidii resulted in priority allocation of resources to compensational leaf growth and a concomitant reduction in flower and seed production. The compensational leaf production greatly increased the demand for nitrogen, while continued leaf removal decreased the pool of stored nitrogen. This led to changes in nitrogen remobilisation and an increased importance of root uptake. However, the significant decline in root growth will likely impair adequate nutrient uptake from the soil, which is especially important where B. davidii invades nutrient poor habitats and will increase the success of biocontrol of the species. While mycorrhizae increase nutrient accessibility for B. davidii, it is likely that the additional stress of defoliation will negate the small facilitative effects from nitrogen-fixing species like C. arborea. This research provides new insights into the mechanisms regulating leaf area dynamics at the shoot level and systemic physiological responses to defoliation in plants, such as nitrogen translocation. The compensation in leaf area production was considerable but only transitory and thus, the opportunity to alleviate effects of leaf loss though adjustment of light capture limited. However, to ascertain that photosynthesis at whole plant level does not increase after defoliation, more detailed measurements especially on new grown leaves are necessary. In general, defoliation had greatly reduced plant growth and performance so that an optimistic outlook for controlling this species can be given. Conclusions about the wider impacts of B. davidii on soil chemistry and community function will require further research.
Identifer | oai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/1477 |
Date | January 2007 |
Creators | Thomas, Marc Merlin |
Publisher | University of Canterbury. Biological Sciences |
Source Sets | University of Canterbury |
Language | English |
Detected Language | English |
Type | Electronic thesis or dissertation, Text |
Rights | Copyright Marc Merlin Thomas, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml |
Relation | NZCU |
Page generated in 0.0023 seconds