Orientador: Gilberto Pechoto de Melo / Banca: Cleudmar Amaral de Araújo / Banca: Vicente Lopes Júnior / Resumo: Nas técnicas de identificação de parâmetros, procuram-se determinar os valores desconhecidos pela manipulação dos sinais de entrada e saída do sistema. O tratamento e análise de sinais são relativamente recentes na engenharia, sendo que seu desenvolvimento deu-se juntamente com o dos sensores e condicionadores de sinais e mais recentemente, com os sistemas automáticos de aquisição de dados. Vários métodos têm sido propostos para resolver problemas de identificação, embora nenhum deles possa ser considerado como sendo universalmente adequado a todas as situações. Conhecendo-se os parâmetros dos sistemas, pode-se acompanhar através de monitoramento e técnicas de identificação, a evolução de possíveis falhas devido à variação destes parâmetros. Os processos de identificação, a partir de funções ortogonais, começam com a construção de uma matriz operacional, o que permite, através de integrações a conversão de um conjunto de equações diferenciais em um conjunto de equações algébricas e consequentemente a obtenção dos parâmetros desconhecidos. Neste trabalho, apresentam-se as técnicas de Identificação de Parâmetros utilizando as funções ortogonais de Fourier e polinomiais de Legendre e Chebyshev. / Abstract: In the parameter identification techniques, it is important to determine the unknown values in the manipulation of input and output signal of the system. The treatment and analysis of signals are relatively recent in the engineering, and its development took place with the sensors and the signal conditioning and recently, with the automatic data acquisition systems. Various methods have been proposed to solve identification problems, although any of them can be regarded universally adequate to all the situations. If the parameters of the systems, is known it can be accompanied, through monitoring and identification techniques, the evolution of possible fault due to the variation of the parameters. The identification process, from these types of functions, start with the construction of an operational matrix for the integration of orthogonal bases vectors, which allow the conversion of a differential equation set to a algebraic equation set, obtaining the unknown parameters. In this work, the parameter identification techniques used, the orthogonal functions of Fourier and polynomial of Legendre and Chebyshev, is presented. / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000225149 |
Date | January 2004 |
Creators | Santos, Katia Antonia Cardoso dos. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira). |
Publisher | Ilha Solteira : [s.n.], |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | English |
Type | text |
Format | 119 p. |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0023 seconds