Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: There is a strong focus on the use of titanium and its alloys in the aerospace industry due to the high ultimate tensile strength and high strength-to-weight ratio of the material. The high performance nature of the material also makes it difficult and costly to machine. South Africa has the second most abundant titanium resources in the world in the form of rutile and ilmenite but no value chain to produce titanium parts from the ore. Currently, the ore is sold overseas at low prices. There exists an initiative to create a full titanium value chain in South Africa by the Department of Science and Technology. This project forms part of this initiative, where local industry is equipped with knowledge and skills to produce and machine titanium parts.
The focus of this study is to determine whether it is possible to machine titanium aerospace parts at a local industry partner and equip the industry partner with knowledge and skills in order to facilitate effective and economical machining of these parts. Daliff Precision Engineering was selected as the local industry partner and specific demonstrator parts were selected on which to base the study. The process the industry partner currently uses to machine aerospace parts from difficult-to-machine alloys was studied and evaluated. It was found that about 70% of the machining time was spent on a single roughing process, hence the decision to study the roughing process in an attempt to establish whether improvement was possible. Pilot tests were done at the facilities of the industry partner and time savings of 95% were realised on the roughing process.
A 2-level 3-factor Design of Experiments methodology was followed for experimentation and analysis of titanium machining at the industry partner. The roughing process of the demonstrator part was simulated on the CNC machining centre and the depth of cut, cutting speed and feed per tooth were selected as the factors, and the response was tool wear. A statistical analysis was done using Modde 9.1 design of experiments software and an optimisation model was created in order to determine a feasible set of cutting parameters, maximise material removal rate and have a target amount of tool wear. The findings show that it is possible to economically machine titanium aerospace parts with a selected geometry at the industry partner without the need for significant capital investments. The industry partner can use the knowledge generated in this project to validate their titanium machining capabilities and form part of the titanium value chain that is being developed in South Africa. / AFRIKAANSE OPSOMMING: Daar is ‘n groot fokus op die gebruik van titaan allooie in die lugvaart nywerheid, as gevolg van die material se hoë trek-sterkte en hoë sterkte-tot-gewig verhouding. Die eienskappe wat die material so aantreklik maak, is ook die rede wat dit moeilik en duur maak om te masjineer. Suid-Afrika het die tweede grootste titaan reserwes in die wêreld in die vorm van rutiel en ilmeniet erts, maar geen waarde ketting om titaan onderdele te vervaardig van die erts af nie. Die erts word tans oorsee verkoop teen lae pryse. Daar is tans ‘n inisiatief om ‘n titaan waardeketting in Suid-Afrika te skep deur die Departement van Wetenskap en Tegnologie. Hierdie projek vorm deel van hierdie inisiatief om die plaaslike nywerheid toe te rus met kennis en vaardighede om titaan produkte te vervaardig.
The fokus van hierdie studie is om te bepaal of dit moontlik is om titaan lugvaart onderdele te masjineer by ‘n plaaslike industrie-vennoot en om hierdie vennoot met kennis en vaardighede toe te rus om hierdie onderdele effektief en ekonomies te vervaardig. Daliff Precision Engineering is gekies as die plaaslike industrie-vennoot en spesifieke demonstrator onderdele is gekies om die studie op te baseer. Die proses wat die industrie-vennoot tans gebruik om moeilik-om-te-masjineer allooie te masjineer is bestudeer en ge-evalueer. Daar was bevind dat 70% van die masjineringstyd bestee word aan ‘n enkele uitrof-proses. Daar is besluit om vas te stel of die uitrof-proses verbeter kan word. Loods-eksperimente is gedoen by die industrie-vennoot se fasiliteite en ‘n tydsbesparing van 95% is gevind op die uitrof-proses.
‘n 2-Vlak 3-faktor eksperimentele ontwerp metodologie is gevolg om eksperimente by die industrie-vennoot op titaan uit te voer en te analiseer. Die uitrof-proses van die demonstrator onderdeel is gesimuleer op die CNC masjineringsentrum en die diepte van snit, snyspoed en voer per tand is gekies as die faktore en beitel-slytasie is gekies as die respons. ‘n Statistiese analise is gedoen deur Modde 9.1 eksperimentele ontwerp sagteware te gebruik om ‘n moontlike stel van sny-parameters te identifiseer om die materiaal-verwyderingstempo te maksimeer en die teiken waarde vir beitel-slytasie te bereik. Daar is gevind dat dit moontlik is on titaan lugvaart onderdele met ‘n spesifieke geometrie ekonomies te masjineer by die industrie-vennoot, sonder om enige beduidende kapitaal uitgawes aan te gaan. Die industrie-vennoot kan die kennis gebruik wat geskep is deur die projek om hulle titaan masjineringsvaardighede te valideer en om deel te vorm van die titaan waardeketting wat besig is om in Suid-Afrika ontwikkel te word.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/96139 |
Date | 12 1900 |
Creators | De Bruyn, Ruan |
Contributors | Treurnicht, N. F., Van Schalkwyk, T. Dirkse, Stellenbosch University. Faculty of Engineering. Department of Industrial Engineering. |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Format | xii, 91 p. : ill. |
Rights | Stellenbosch University |
Page generated in 0.0024 seconds