Return to search

Architectures de circuits nanoélectroniques neuro-inspirée.

Les nouvelles techniques de fabrication nanométriques comme l'auto-assemblage ou la nanoimpression permettent de réaliser des matrices régulières (crossbars) atteignant des densités extrêmes (jusqu'à 1012 nanocomposants/cm2) tout en limitant leur coût de fabrication. Cependant, il est attendu que ces technologies s'accompagnent d'une augmentation significative du nombre de défauts et de dispersions de caractéristiques. La capacité à exploiter ces crossbars est alors conditionnée par le développement de nouvelles techniques de calcul capables de les spécialiser et de tolérer une grande densité de défauts. Dans ce contexte, l'approche neuromimétique qui permet tout à la fois de configurer les nanodispositifs et de tolérer leurs défauts et dispersions de caractéristiques apparaît spécialement pertinente. L'objectif de cette thèse est de démontrer l'efficacité d'une telle approche et de quantifier la fiabilité obtenue avec une architecture neuromimétique à base de crossbar de memristors, ou neurocrossbar (NC). Tout d'abord la thèse introduit des algorithmes permettant l'apprentissage de fonctions logiques sur un NC. Par la suite, la thèse caractérise la tolérance du modèle NC aux défauts et aux variations de caractéristiques des memristors. Des modèles analytiques probabilistes de prédiction de la convergence de NC ont été proposés et confrontés à des simulations Monte-Carlo. Ils prennent en compte l'impact de chaque type de défaut et de dispersion. Grâce à ces modèles analytiques il devient possible d'extrapoler cette étude à des circuits NC de très grande taille. Finalement, l'efficacité des méthodes proposées est expérimentalement démontrée à travers l'apprentissage de fonctions logiques par un NC composé de transistors à nanotube de carbone à commande optique (OG-CNTFET).

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00679300
Date09 March 2012
CreatorsChabi, Djaafar
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds