Return to search

Spulen-Arrays mit bis zu 32 Empfangselementen für den Einsatz an klinischen NMR-Geräten / Coil-Arrays with up to 32 receive channels for the use on clinical NMR systems

In dieser Arbeit wurden für spezielle Anwendungen an klinischen MR-Geräten optimierte Phased-Array-Spulen entwickelt. Das Ziel war, durch die Verwendung neuer Spulen entweder neue Anwendungsgebiete für klinische MR-Geräte zu eröffnen oder bei bestehenden Applikationen die Diagnosemöglichkeiten durch eine Kombination von höherem SNR und kleineren g-Faktoren im Vergleich zu bestehenden Spulen zu verbessern. In Kapitel 3 wurde untersucht, ob es durch den Einsatz neu entwickelter, dedizierter Kleintierspulen sinnvoll möglich ist, Untersuchungen an Kleintieren an klinischen MR-Geräten mit einer Feldstärke von 1,5T durchzuführen. Der Einsatz dieser Spulen verspricht dem klinischen Anwender Studien an Kleintieren durchführen zu können, bei denen er den gleichen Kontrast wie bei einer humanen Anwendung erhält und gleichzeitig Kontrastmittel sowie Sequenzen, die klinisch erprobt sind, einzusetzen. Durch die gewählten geometrischen Abmessungen der Spulen ist es möglich, Zubehör von dedizierten Tier-MR-Geräten, wie z. B. Tierliegen oder EKG- bzw. Atemtriggereinheiten, zu verwenden. Durch Vorversuche an für Ratten dimensionierten Spulen wurden grundlegende Zusammenhänge zwischen verwendetem Entkopplungsmechanismus und SNR bzw. Beschleunigungsfähigkeit erarbeitet. Für Ratten wurde gezeigt, dass in akzeptablen Messzeiten von unter fünf Minuten MR-Messungen des Abdomens in sehr guter Bildqualität möglich sind. Ebenfalls gezeigt wurde die Möglichkeit durch den Einsatz von paralleler Bildgebung sowie Kontrastmitteln hochaufgelöste Angiographien durchzuführen. Es stellte sich heraus, dass bei 1,5T dedizierte Mäusespulen bei Raumtemperatur von den SNR-Eigenschaften am Limit des sinnvoll Machbaren sind. Trotzdem war es möglich, auch für Mäuse ein 4-Kanal-Phased-Array zu entwickeln und den Einsatz bei kontrastmittelunterstützten Applikationen zu demonstrieren. Insgesamt wurde gezeigt, dass durch den Einsatz von speziellen, angepassten Kleintierspulen auch Tieruntersuchungen an klinischen MR-Geräten mit niedriger Feldstärke durchführbar sind. Obwohl sich die Bestimmung der Herzfunktion an MR-Geräten im klinischen Alltag zum Goldstandard entwickelt hat, ist die MR-Messung durch lange Atemanhaltezyklen für einen Herzpatienten sehr mühsam. In Kapitel 4 wurde deswegen die Entwicklung einer 32-Kanal-Herzspule beschrieben, welche den Komfort für Patienten deutlich erhöhen kann. Schon mit einem ersten Prototypen für 3T war es möglich, erstmals Echtzeitbildgebung mit leicht reduzierter zeitlicher Auflösung durchzuführen und damit auf das Atemanhalten komplett zu verzichten. Dies ermöglicht den Zugang neuer Patientengruppen, z. B. mit Arrythmien, zu MR-Untersuchungen. Durch eine weitere Optimierung des Designs wurde das SNR sowie das Beschleunigungsvermögen signifikant gesteigert. Bei einem Beschleunigungsfaktor R = 5 in einer Richtung erhält man z. B. gemittelt über das gesamte Herz ein ca. 60 % gesteigertes SNR zu dem Prototypen. Die Kombination dieser Spule zusammen mit neuentwicklelten Methoden wie z. B. Compressed- Sensing stellt es in Aussicht, die Herzfunktion zukünftig in der klinischen Routine in Echtzeit quantifizieren zu können. In Kapitel 5 wurde die Entwicklung einer optimierten Brustspulen für 3T beschrieben. Bei Vorversuchen bei 1,5T wurden Vergleiche zwischen der Standardspule der Firma Siemens Healthcare und einem 16-Kanal-Prototypen durchgeführt. Trotz größerem Spulenvolumen zeigt die Neuentwicklung sowohl hinsichtlich SNR als auch paralleler Bildgebungseigenschaften eine signifikante Verbesserung gegenüber der Standardspule. Durch die Einhaltung aller Kriterien für Medizinprodukte kann diese Spule auch für den klinischen Einsatz verwendet werden. Mit den verbesserten Eigenschaften ist es beispielsweise möglich, bei gleicher Messdauer eine höhere Auflösung zu erreichen. Aufgrund des intrinsischen SNR-Vorteils der 3 T-Spule gegenüber der 1,5 T-Spule ist es dort sogar möglich, bei höheren Beschleunigungsfaktoren klinisch verwertbare Schnittbilder zu erzeugen. Zusammenfassend wurden für alle drei Applikationen NMR-Empfangsspulen entwickelt, die im Vergleich zu den bisher verfügbaren Spulen, hinsichtlich SNR und Beschleunigungsvermögen optimiert sind und dem Anwender neue Möglichkeiten bieten. / Purpose of this work was to develop optimized phased array coils for clinical magnetic resonance imaging (MRI) systems for applications were dedicated coils were not readily available. Chapter 3 evaluates the use of dedicated small animal coils on clinical MR scanners with a field strength of 1,5T instead of using special animal-systems with higher intrinsic signal-to-noise ratio. Advantage of the clinical system is the availability and the portability of the results of animal studies to human applications because sequences can easily be adopted. The available contrast is similar and clinically tested contrast agents can directly be used. Comparisons of different array decoupling methods with respect to SNR and parallel imaging performance have been conducted on coils with the standard size of rat-coils on animal scanners as part of this work. This geometry made it possible to directly use accessories of these systems like animal beds and monitoring systems. It showed that it is possible to acquire images of the abdomen of the rat in under five minutes in very good image quality with such setup. It was also used for high resolution angiographie in very short scanning time due to the use of parallel imaging techniques. However it has shown that the use of dedicated mouse coils is at the very limit of SNR at 1.5 T. Nevertheless a four channel phased array coil was built and tested. The results are described within this work. Another application which can benefit of novel dedicated coils is the assessment of cardiac function. Especially for heart patients it can be very exhausting to hold breath for a longer period of time, which is required by the current standard protocol for cardiac imaging. The combination of 3T and many available receive channels is a very promising combination to shorten the scan time. Chapter 4 describes the development of a 32 channel cardiac phased array coil for 3T to investigate this idea. Starting with an existing coil for 1.5T a first prototype was developed which was the first coil to demonstrate real-time cardiac imaging with only slightly reduced temporal resolution. A further optimization of this coil led to a completely new coil with higher SNR performance and better parallel imaging abilities and was a further step towards real-time imaging of the heart in clinical routine. Chapter 5 describes the development of an optimized 16 channel breast coil for 3T which can be used in clinical routine. Tests at 1.5T were conducted to find the best coil element layout . It was also possible to compare the prototypes at this field strength to an existing breast coil of Siemens Healthcare. Better SNR and parallel imaging performance could be achieved due to the possibility of adjusting the coil size to different breast sizes and therefore optimizing the filling factor. These improved qualities will allow to have higher resolution in the same scan time compared to the current standard in clinical routine. In conclusion it has been shown that these applications can benefit from dedicated array coils due to better SNR and parallel imaging performance.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:6749
Date January 2012
CreatorsWichmann, Tobias
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.003 seconds