Return to search

A Topics Analysis Model for Health Insurance Claims

Mathematical probability has a rich theory and powerful applications. Of particular note is the Markov chain Monte Carlo (MCMC) method for sampling from high dimensional distributions that may not admit a naive analysis. We develop the theory of the MCMC method from first principles and prove its relevance. We also define a Bayesian hierarchical model for generating data. By understanding how data are generated we may infer hidden structure about these models. We use a specific MCMC method called a Gibbs' sampler to discover topic distributions in a hierarchical Bayesian model called Topics Over Time. We propose an innovative use of this model to discover disease and treatment topics in a corpus of health insurance claims data. By representing individuals as mixtures of topics, we are able to consider their future costs on an individual level rather than as part of a large collective.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-4804
Date18 October 2013
CreatorsWebb, Jared Anthony
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.002 seconds