Return to search

Topology and Toolpath Optimization via Layer-Less Multi-Axis Material Extrusion

Although additive manufacturing technologies are often referred to as "3D printing," the family of technologies typically deposit material on a layer-by-layer basis. For material extrusion (ME) in particular, the deposition process results in weak inter- and intra-layer bonds that reduce mechanical performance in those directions. Despite this shortcoming, ME offers the opportunity to specifically and preferentially align the reinforcement of a composite material throughout a part by customizing the toolpath. Recent developments in multi-axis deposition have demonstrated the ability to place material outside of the XY-plane, enabling depositions to align to any 3D (i.e., non-planar) vector. Although mechanical property improvements have been demonstrated, toolpath planning capabilities are limited; the geometries and load paths are restricted to surface-based structures, rather than fully 3D load paths.

By specifically planning deposition paths (roads) where the composite reinforcement is aligned to the load paths within a structure, there is an opportunity for a step-change in the mechanical properties of ME parts. To achieve this goal for arbitrary geometries and load paths, the author presents a design and process planning workflow that concurrently optimizes the topology of the part and the toolpath used to fabricate it. The workflow i) identifies the optimal structure and road directions using topology optimization (TO), ii) plans roads aligned to those optimal directions, iii) orders those roads for collision-free deposition, and iv) translates that ordered set of roads to a robot-interpretable toolpath.

A TO algorithm, capable of optimizing 3D material orientations, is presented and demonstrated in the context of 2D and 3D load cases. The algorithm achieved a 38% improvement in final solution compliance for a 3D Wheel problem relative to existing TO algorithms with planar orientation optimization considerations. Optimized geometries and their associated orientation fields were then propagated with the presented alignment-focused deposition path planner and conventional toolpath planners. The presented method resulted in a 97% correlation between the road directions and the orientation field, while the conventional methods only achieved 77%. A planar multi-load case was then fabricated using each of these methods and tested in both tension and bending; the presented alignment-focused method resulted in a 108.24% and 29.25% improvement in each load case, respectively. To evaluate the workflow in a multi-axis context, an inverted Wheel problem was optimized and processed by the workflow. The resulting toolpaths were then fabricated on a multi-axis deposition platform and mechanically evaluated relative to geometrically similar structures using a conventional toolpath planner. While the alignment in the multi-axis specimen was improved from the conventional method, the mechanical properties were reduced due to limitations of the multi-axis deposition platform. / Doctor of Philosophy / The material extrusion additive manufacturing process is widely used by hobbyists and industry professionals to produce demonstration parts, but the process is often overlooked for end-use, load bearing parts. This is due to the layer-by-layer fabrication method used to create the desired geometries; the bonding between layers is weaker than the direction material is deposited. If load paths acting on the printed structure travel across those layer interfaces, the part performance will decrease. Whereas gantry-based systems are forced into this layer-by-layer strategy, robotic arms allow the deposition head to rotate, which enables depositions to be placed outside of the XY-plane (i.e., the typical layer). If depositions are appropriately planned using this flexibility, the layer interfaces can be oriented away from the load paths such that all of the load acts on the (stronger) depositions.

Although this benefit has been demonstrated in literature, the existing methods for planning robotic toolpaths have limits on printability; certain load paths and geometries cannot be printed due to concerns that the robotic system will collide with the part being printed. This work focuses on increasing the generality of these toolpath planning methods by enabling any geometry and set of load paths to be printed. This is achieved through three objectives: i) identify the load paths within the structure, ii) plan roads aligned to those load paths, iii) order those roads such that collisions will not occur. The author presents and evaluates a design workflow that addresses each of these three objectives by simultaneously optimizing the geometry of the part as well as the toolpath used to fabricate it. Planar and 3D load cases are optimized, processed using the presented workflow, and then fabricated on a multi-axis deposition platform. The resulting specimens are then mechanically tested and compared to specimens fabricated using conventional toolpath planning methods.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/111344
Date28 January 2021
CreatorsKubalak, Joseph Riley
ContributorsMechanical Engineering, Wicks, Alfred L., Williams, Christopher Bryant, Canfield, Robert Arthur, West, Robert L., Komendera, Erik
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0024 seconds