• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 14
  • 14
  • 13
  • 13
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting Process and Material Design Impact on and Irreversible Thermal Strain in Material Extrusion Additive Manufacturing

D'Amico, Tone Pappas 09 August 2019 (has links)
Increased interest in and use of additive manufacturing has made it an important component of advanced manufacturing in the last decade. Material Extrusion Additive Manufacturing (MatEx) has seen a shift from a rapid prototyping method harnessed only in parts of industry due to machine costs, to something widely available and employed at the consumer level, for hobbyists and craftspeople, and industrial level, because falling machine costs have simplified investment decisions. At the same time MatEx systems have been scaled up in size from desktop scale Fused Filament Fabrication (FFF) systems to room scale Big Area Additive Manufacturing (BAAM). Today MatEx is still used for rapid prototyping, but it has also found application in molds for fiber layup processes up to the scale of wind turbine blades. Despite this expansion in interest and use, MatEx continues to be held back by poor part performance, relative to more traditional methods such as injection molding, and lack of reliability and user expertise. In this dissertation, a previously unreported phenomenon, irreversible thermal strain (ITε), is described and explored. Understanding ITε improves our understanding of MatEx and allows for tighter dimensional control of parts over time (each of which speaks to extant challenges in MatEx adoption). It was found that ITε occurs in multiple materials: ABS, an amorphous polymer, and PLA, a semi-crystalline one, suggesting a number of polymers may exhibit it. Control over ITε was achieved by tying its magnitude back to part layer thickness and its directionality to the direction of roads within parts. This was explained in a detail by a micromechanical model for MatEx described in this document. The model also allows for better description of stress-strain response in MatEx parts broadly. Expanding MatEx into new areas, one-way shape memory in a commodity thermoplastic, ABS, was shown. Thermal history of polymers heavily influences their performance and MatEx thermal histories are difficult to measure experimentally. To this end, a finite element model of heat transfer in the part during a MatEx build was developed and validated against experimental data for a simple geometry. The application of the model to more complex geometries was also shown. Print speed was predicted to have little impact on bonds within parts, consistent with work in the literature. Thermal diffusivity was also predicted to have a small impact, though larger than print speed. Comparisons of FFF and BAAM demonstrated that, while the processes are similar, the size scale difference changes how they respond to process parameter and material property changes, such as print speed or thermal diffusivity, with FFF having a larger response to thermal diffusivity and a smaller response to print speed. From this experimental and simulation work, understanding of MatEx has been improved. New applications have been shown and rational design of both MatEx processes and materials for MatEx has been enabled.
2

Predicting Process and Material Design Impact on and Irreversible Thermal Strain in Material Extrusion Additive Manufacturing

D'Amico, Tone Pappas 27 June 2019 (has links)
Increased interest in and use of additive manufacturing has made it an important component of advanced manufacturing in the last decade. Material Extrusion Additive Manufacturing (MatEx) has seen a shift from a rapid prototyping method harnessed only in parts of industry due to machine costs, to something widely available and employed at the consumer level, for hobbyists and craftspeople, and industrial level, because falling machine costs have simplified investment decisions. At the same time MatEx systems have been scaled up in size from desktop scale Fused Filament Fabrication (FFF) systems to room scale Big Area Additive Manufacturing (BAAM). Today MatEx is still used for rapid prototyping, but it has also found application in molds for fiber layup processes up to the scale of wind turbine blades. Despite this expansion in interest and use, MatEx continues to be held back by poor part performance, relative to more traditional methods such as injection molding, and lack of reliability and user expertise. In this dissertation, a previously unreported phenomenon, irreversible thermal strain (ITε), is described and explored. Understanding ITε improves our understanding of MatEx and allows for tighter dimensional control of parts over time (each of which speaks to extant challenges in MatEx adoption). It was found that ITε occurs in multiple materials: ABS, an amorphous polymer, and PLA, a semi-crystalline one, suggesting a number of polymers may exhibit it. Control over ITε was achieved by tying its magnitude back to part layer thickness and its directionality to the direction of roads within parts. This was explained in a detail by a micromechanical model for MatEx described in this document. The model also allows for better description of stress-strain response in MatEx parts broadly. Expanding MatEx into new areas, one-way shape memory in a commodity thermoplastic, ABS, was shown. Thermal history of polymers heavily influences their performance and MatEx thermal histories are difficult to measure experimentally. To this end, a finite element model of heat transfer in the part during a MatEx build was developed and validated against experimental data for a simple geometry. The application of the model to more complex geometries was also shown. Print speed was predicted to have little impact on bonds within parts, consistent with work in the literature. Thermal diffusivity was also predicted to have a small impact, though larger than print speed. Comparisons of FFF and BAAM demonstrated that, while the processes are similar, the size scale difference changes how they respond to process parameter and material property changes, such as print speed or thermal diffusivity, with FFF having a larger response to thermal diffusivity and a smaller response to print speed. From this experimental and simulation work, understanding of MatEx has been improved. New applications have been shown and rational design of both MatEx processes and materials for MatEx has been enabled.
3

Multi-Axis Material Extrusion Additive Manufacturing of Continuous Carbon Fiber Composites

Beaumont, Kieran Deane 06 July 2023 (has links)
Master of Science / Material extrusion is a common form of 3D printing that has historically been limited to producing prototypes, models, and low load-bearing parts. This is primarily because parts are manufactured layer-by-layer, resulting in poor adhesion along the build direction, and machines struggle to print with high-strength polymers, which tend to shrink significantly as they cool. However, one way to address these limitations is to use fiber-reinforced materials in combination with multi-axis deposition strategies. In material extrusion, embedded fibers will align themselves along the deposition path, providing structural, thermal, and chemical improvements. Multi-axis toolpathing can enable the deposition of this fiber-filled material in full 3D along a part's expected stress paths. This is possible using a complex kinematic system like an industrial robot arm that can rotate the angle of the tool relative to the part as it is printing. The objective of this work was to develop and test a tool capable of multi-axis continuous carbon fiber reinforcement, which required a dedicated cutting mechanism to shear the fiber at the end of each deposition path, control over the amount of fiber used, and a slender tool profile to avoid collisions during multi-axis printing. The findings of this work revealed that while the use of continuous carbon fiber further reduced the adhesion between deposition paths, it substantially improved the strength of the part along them. To validate the multi-axis capability of the system, a toolpath was generated for a curved tensile bar. The results showed that the continuous carbon fiber multi-axis toolpath resisted a load 820.57% higher than an XY-planar sliced part printed with traditional filament, confirming the effectiveness of the presented approach. Multi-axis motion can also be used for avoiding support material requirements. In traditional 3-axis material extrusion, steep overhanging features often require additional, sacrificial material to be printed underneath. This leads to longer print times, more material waste, and a poor surface finish left behind on the final part. To minimize the amount of support material required, various techniques have been explored, including changing the toolpath, part geometry, or material processing parameters. However, none of these techniques have been successful in eliminating the need for supports entirely. A promising approach to address this issue is multi-axis material extrusion, where the angle of the printing tool and the direction of the layers can be precisely controlled during the printing process. This technique can be used to ensure that the tool is always extruding material onto a well-supported surface, rather than over thin air. However, research to date has not yet fully explored how the range of achievable overhang features changes as the tool is rotated. To address this knowledge gap, this work used an industrial robot arm equipped for material extrusion to investigate the relationship between tool angle, build direction, and achievable overhang threshold. The results showed that the same overhang limitations that exist in the XY plane will rotate with the tool and are unaffected by gravitational forces. These findings provide valuable insights for advancing the use of multi-axis material extrusion in the production of complex and intricate 3D objects without the need of supports.
4

Topology and Toolpath Optimization via Layer-Less Multi-Axis Material Extrusion

Kubalak, Joseph Riley 28 January 2021 (has links)
Although additive manufacturing technologies are often referred to as "3D printing," the family of technologies typically deposit material on a layer-by-layer basis. For material extrusion (ME) in particular, the deposition process results in weak inter- and intra-layer bonds that reduce mechanical performance in those directions. Despite this shortcoming, ME offers the opportunity to specifically and preferentially align the reinforcement of a composite material throughout a part by customizing the toolpath. Recent developments in multi-axis deposition have demonstrated the ability to place material outside of the XY-plane, enabling depositions to align to any 3D (i.e., non-planar) vector. Although mechanical property improvements have been demonstrated, toolpath planning capabilities are limited; the geometries and load paths are restricted to surface-based structures, rather than fully 3D load paths. By specifically planning deposition paths (roads) where the composite reinforcement is aligned to the load paths within a structure, there is an opportunity for a step-change in the mechanical properties of ME parts. To achieve this goal for arbitrary geometries and load paths, the author presents a design and process planning workflow that concurrently optimizes the topology of the part and the toolpath used to fabricate it. The workflow i) identifies the optimal structure and road directions using topology optimization (TO), ii) plans roads aligned to those optimal directions, iii) orders those roads for collision-free deposition, and iv) translates that ordered set of roads to a robot-interpretable toolpath. A TO algorithm, capable of optimizing 3D material orientations, is presented and demonstrated in the context of 2D and 3D load cases. The algorithm achieved a 38% improvement in final solution compliance for a 3D Wheel problem relative to existing TO algorithms with planar orientation optimization considerations. Optimized geometries and their associated orientation fields were then propagated with the presented alignment-focused deposition path planner and conventional toolpath planners. The presented method resulted in a 97% correlation between the road directions and the orientation field, while the conventional methods only achieved 77%. A planar multi-load case was then fabricated using each of these methods and tested in both tension and bending; the presented alignment-focused method resulted in a 108.24% and 29.25% improvement in each load case, respectively. To evaluate the workflow in a multi-axis context, an inverted Wheel problem was optimized and processed by the workflow. The resulting toolpaths were then fabricated on a multi-axis deposition platform and mechanically evaluated relative to geometrically similar structures using a conventional toolpath planner. While the alignment in the multi-axis specimen was improved from the conventional method, the mechanical properties were reduced due to limitations of the multi-axis deposition platform. / Doctor of Philosophy / The material extrusion additive manufacturing process is widely used by hobbyists and industry professionals to produce demonstration parts, but the process is often overlooked for end-use, load bearing parts. This is due to the layer-by-layer fabrication method used to create the desired geometries; the bonding between layers is weaker than the direction material is deposited. If load paths acting on the printed structure travel across those layer interfaces, the part performance will decrease. Whereas gantry-based systems are forced into this layer-by-layer strategy, robotic arms allow the deposition head to rotate, which enables depositions to be placed outside of the XY-plane (i.e., the typical layer). If depositions are appropriately planned using this flexibility, the layer interfaces can be oriented away from the load paths such that all of the load acts on the (stronger) depositions. Although this benefit has been demonstrated in literature, the existing methods for planning robotic toolpaths have limits on printability; certain load paths and geometries cannot be printed due to concerns that the robotic system will collide with the part being printed. This work focuses on increasing the generality of these toolpath planning methods by enabling any geometry and set of load paths to be printed. This is achieved through three objectives: i) identify the load paths within the structure, ii) plan roads aligned to those load paths, iii) order those roads such that collisions will not occur. The author presents and evaluates a design workflow that addresses each of these three objectives by simultaneously optimizing the geometry of the part as well as the toolpath used to fabricate it. Planar and 3D load cases are optimized, processed using the presented workflow, and then fabricated on a multi-axis deposition platform. The resulting specimens are then mechanically tested and compared to specimens fabricated using conventional toolpath planning methods.
5

Material Extrusion based Additive Manufacturing of Semicrystalline Polymers: Correlating Rheology with Print Properties

Das, Arit 09 September 2022 (has links)
Filament-based material extrusion (MatEx) additive manufacturing has garnered huge interest in both academic and industrial communities. Moreover, there is an increasing need to expand the material catalog for MatEx to produce end use parts for a wide variety of functional applications. Current approaches towards MatEx of semicrystalline thermoplastics are in their nascent stage with fiber reinforcements being one of the most common techniques. MatEx of commodity semicrystalline thermoplastics has been investigated but most of the current methods are extremely material and machine specific. The goal of this dissertation is to enable MatEx of semicrystalline polymers with mechanical properties approaching that of injection molded parts. Tailored molecular architectures of blends that can control the crystallization kinetics from the melt state are investigated. By modifying the crystallization time window, the time during which chain diffusion can occur across the deposited layers is prolonged, which allows for a stronger bond between layers. Such differences in the crystallization process impact the z-axis adhesion and residual stress state, which directly affect mechanical properties and warpage in the printed parts. The impact of blend composition on polymer chain diffusion, crystallization profiles, and print properties resulting from the repeated non-uniform thermal history in filament based MatEx is studied. The melt flow behaviour is characterized using rheology and its effect on the interlayer adhesion of printed parts and print precision is explored. The extent of polymer chain re-entanglement post deposition on the printer bed is quantitatively determined using interrupted shear rheology protocols. Tensile bars are printed and mechanically characterized to analyze the tensile performance of the printed parts. Correlating the rheological findings with the mechanical performance of the printed parts provides valuable insights into the complex interlayer welding process during MatEx and is critical to improving existing machine designs and feedstocks in order to achieve printed parts with properties approaching their injection molded counterparts. The results will be essential in identifying optimal processing conditions to maximize material specific printed part performance as well as highlight the associated limitations to enable MatEx of next generation materials. / Doctor of Philosophy / Compared to traditional subtractive manufacturing techniques, additive manufacturing (AM) has the potential to transform modern manufacturing capabilities due to its unique advantages including design flexibility, mass customization, energy efficiency, and economic viability. The filament-based material extrusion (MatEx), also referred to as fused filament fabrication (FFF), employing thermoplastic polymers (and composites) has emerged as one of the most common AM modality for industrial adoption due to its operational simplicity. However, the widespread application of MatEx has been limited due to the lack of compatible materials, anisotropic mechanical properties, and lack of quality assurance. Most of the research on FFF has been performed on amorphous polymers with almost negligible levels of crystalline content such as polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS). Semicrystalline polymers are an attractive choice for FFF feedstocks compared to the amorphous ones due to their improved thermal resistance, toughness, and deformability. However, processing semicrystalline polymers using FFF is challenging due to the volumetric shrinkage encountered during crystallization from the melt state. This results in the buildup of significant levels of residual stresses at temperatures lower than the crystallization temperature of the polymer resulting in warpage of the printed parts. The research presented in this dissertation aims to address the aforementioned challenges by characterizing semicrystalline polymer feedstocks under conditions representative of the multiphysics encountered during a typical FFF process. Several strategies to limit shrinkage and warpage are discussed that involve tuning the thermal profile and crystallization kinetics during printing. The former is achieved by addition of thermally conductive carbon fiber reinforcements while the latter is realized by blending amorphous resins or low crystallinity polymers to the semicrystalline polymer matrix. The fibers results in a more homogenous temperature distribution during printing while the incorporation of the resins modify the rate of crystallization; both of which play a pivotal role in reducing the residual stress build-up and hence minimizing the warpage during printing. The printability of the materials is investigated based on the shear- and temperature dependent viscous response of the polymers. The printed parts with fiber reinforcements exhibit high levels of mechanical anisotropy compared to the blends with the resins, likely due to differences in polymer chain mobility at the interface. The tensile properties of the printed polymer blends are slightly inferior to those obtained using traditional manufacturing techniques; however, properties close to 90-95% of injection molded properties are recovered through a simple post-processing thermal annealing step. The obtained results will assist in optimizing the processing parameters and feedstock formulation in order to consistently produce printed parts with minimal defects and tailored mechanical properties for functional applications.
6

Rheology of Filled and Unfilled Polyurethanes for Reactive Extrusion-Based Applications

Reynolds, John Page 19 December 2023 (has links)
Additive manufacturing (AM) is a form of production that directly processes raw materials into their final form by building the product in a layer-by-layer fashion. Numerous types of AM exist, including selective laser sintering (SLS) of polymeric powders, vat polymerization (VP) of low viscosity photocurable resins, and material extrusion (MatEx) of thermoplastic or high viscosity composite materials. Because of its ability to reduce material waste while printing complex geometries, AM has the potential to revolutionize the manufacturing industry for a diverse set of materials and products. MatEx of thermoplastic feedstocks is most commonly performed using fused filament fabrication (FFF) – a form of melt extrusion. A solid filament is fed directly into a heated nozzle, where it melts onto a build bed before resolidifying in a matter of seconds. While this is the most common form of AM, especially among hobbyists, the material catalog is limited to thermoplastic polymers, and difficulties arise when fillers are introduced (e.g. reactions at elevated temperatures, clogging, disruption of polymer chain diffusion, and large increases in viscoelastic properties). To combat these challenges, direct ink write (DIW) AM extrudes highly viscous composites by applying pneumatic backpressure to a syringe, such that the material can be extruded in ambient conditions. This method enables processing of unreacted, thermosetting resins which have been filled with a large proportion of solid particulate fillers, called "highly filled" inks. The interparticle network formed from particle-particle interactions in the form of weak surface forces (e.g. Van der Waals forces) provides structural stability of the printed lines, such that they can sustain the weight of subsequent layers. In the realm of DIW 3D printing material discovery and processing, there are currently three major challenges. First, the high shear region of the nozzle frequently disrupts the interparticle network through a de-agglomeration process, such that there is a finite timescale for the interparticle network to reestablish itself. During this timeframe, the deformation/reformation process causes printed lines to sag, which negatively impacts both print quality and mechanical properties. Second, printed parts require a post-processing step to develop adequate mechanical properties suitable for the final product. The kinetics of this cure process are extremely slow, often taking multiple days or weeks to reach completion. Third, high shear rheological characterization of highly filled inks is challenging because of the numerous artifacts of error associated with high shear testing environments (e.g. sample loss/edge fracture, slip, and large sample size requirements). A literature review in Chapter 2 outlines the most recent advances in highly filled polyurethane processing for DIW, with a particular focus on how interparticle network recovery – in the form of thixotropy – can be tailored using a variety of reactive inks. The subsequent chapters of this dissertation address these challenges by systematically downselecting reactive inks appropriate for highly filled DIW extrusion while introducing numerous process relevant rheological protocols. An initial discussion in Chapter 3 covers the potential drawbacks of thermoplastic polyurethane (TPU) processing as it relates to industrial scale melt extrusion. Specifically, multiple side reactions and degradation processes are identified for a variety of TPU manufacturers. Such reactions elicit undesirable solid-like particulate buildup within the extrusion line, and the impacts/causes of these reactions are quantified using rheological criteria. These protocols offer evidence that differences in processability can arise not just between manufacturers, but also between lots of TPU from the same manufacturer. To address these concerns, Chapter 4 offers an alternative form of polyurethane processing in the form of a thermosetting reaction between hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI). When uncatalyzed at room temperature, full conversion takes place over the course of multiple weeks which necessitates an accelerated kinetic analysis. Hence, a combination of chemorheological and spectroscopic methods are used to rapidly probe for changes in isocyanate reactivity using limited sample quantities, which substantiate the advantages and disadvantages of chemorheology and spectroscopy in the context of curing studies. While this synthetic pathway provides mechanical properties appropriate for the final printed product, a major concern is retention of green body strength post deposition. In order to maintain the shape of printed beads, ultraviolet (UV) light can be shined in-situ onto the nozzle of a DIW printhead, which actively cures the urethane acrylate ink through free radical polymerization. This technique, termed UV-assisted direct ink write (UV-DIW), assists recovery of the interparticle network. A novel rheological method proposed in Chapter 5, termed the "UV-assisted three interval thixotropy test" (UV-3ITT), quantifies the contribution of UV light towards structural stability and printability. This is accomplished by applying stepwise changes in strain on a torsional photorheometer, optionally applying UV light in the third interval, and then quantifying the contribution of UV light towards process-relevant recovery parameters. Resultingly, the threshold of solid particulate fillers required for UV light to improve print fidelity is determined. While most discussions revolve around torsional rheology, this method has one major drawback: it cannot probe the high shear properties of high solids content materials due to sample loss/edge fracture during steady shear measurement. Capillary rheometers are able to probe the viscosity profiles of highly filled materials in high shear environments, but the cost of the device and the sample requirements are burdensome. To resolve this challenge, the "microcapillary rheometer" is developed in Chapter 6 using common laboratory equipment at a fraction of the cost of a full-scale capillary rheometer, which enables rapid characterization of high solids content materials at extrusion-relevant conditions while exploiting small sample quantities. This study illustrates the accuracy and precision of the microcapillary rheometer when comparing the high shear properties of several highly filled systems to the full-scale capillary rheometer. Results highlight that application of the Bagley and Weissenberg-Rabinowitsch corrections is possible using this novel device, which facilitates calculation of true shear viscosity of high solids content systems. The limited sample requirement facilitates characterization of novel or potentially hazardous materials in a much safer, efficient manner, which accelerates material discovery while improving safety standards. / Doctor of Philosophy / Subtractive manufacturing technologies, which reduce raw materials down from their bulk state into a final product, make up a significant portion of the manufacturing sector today due to the convenience and ease of material processing. Some of the most common forms of subtractive manufacturing include lathing, milling, cutting, drilling, and grinding; these methods are applicable for a diverse set of materials ranging from metals to plastics. By the nature of this process, subtractive manufacturing yields substantial material waste, while limiting the complexity of a final product's design. To combat these unintended consequences, a novel form of production termed additive manufacturing (AM) has grown dramatically in the past several decades. AM directly processes raw materials into their final form which reduces material waste while enabling complex geometries to be "printed." Although there are numerous types of additive manufacturing, the most common forms utilize material extrusion, whereby the raw material is deposited through a nozzle and stacked in a layer-by-layer fashion onto a build bed, thus constructing a final product. For materials that melt and flow at elevated temperatures (i.e. thermoplastic materials), fused filament fabrication (FFF) is ideal since a solid filament can be fed into a heated nozzle, melted onto a build bed, and then quickly re-solidified. However, many polymers do not melt at elevated temperatures, and instead degrade; these materials are termed "thermosetting." To print these materials, unreacted thermosetting precursors, which are filled with a large proportion of solid fillers ("highly filled inks"), can be extruded by applying pneumatic back pressure to a syringe at ambient conditions. The process of extruding these materials layer-by-layer describes the direct ink write (DIW) technique. The solid particulate fillers form structural "networks" due to weak electrostatic forces on the surface of the fillers. These forces provide structural stability and enable the printed lines to hold the weight of subsequent layers. Unfortunately, the high-pressure region of the nozzle disrupts this network, causing the printed lines to sag over time. This effect can be reduced by actively applying ultraviolet (UV) light onto the nozzle during extrusion, which helps to hold the particles in place by curing the resin, thus increasing the capacity for a line to sustain the weight of subsequent layers. This form of material extrusion is termed UV-assisted direct ink write (UV-DIW). Because UV light only partially cures the material during prints, a separate, slower thermosetting reaction can occur as the material rests in an oven or in ambient conditions, which completely cures the printed part and provides sufficient mechanical properties. The combination of UV-curable resins, thermosetting resins, and sufficiently large amounts of solid particulate fillers for material extrusion describes the dual-cure nature of this highly filled UV-DIW process. To understand the curing patterns, flow behavior, and the amount of structural deformation that occurs within the nozzle, rheology becomes a powerful characterization tool. This branch of physics deals with the deformation and flow of matter ranging from simple fluids to complex polymer melts. As such, it is possible to probe reaction progress (chemorheology), structural deformation/reformation (thixotropy), and high-shear regimes representative of the DIW process. The research contained within this dissertation provides a holistic understanding of the overlap between rheology and DIW material extrusion for dual-reactive materials. This process begins by evaluating challenges during melt extrusion of thermoplastic polyurethane while quantifying the rate of degradation side reactions. An alternative form of polyurethane synthesis in the form of a thermosetting reaction is then introduced, whereby the reaction progress is evaluated using both rheological and spectroscopic techniques. Next, a novel rheological protocol is introduced which can predict the structural deformation/reformation of an ink during UV-DIW. This research concludes by proposing a downscaled version of the high-shear capillary rheometer which requires only several grams of material in contrast to the dozens of grams required for full-scale capillary rheometry. In essence, the work presented here rapidly evaluates the complex flow behavior and cure progression of various materials relevant for extrusion processes by utilizing limited sample quantities, thus preserving valuable resources while improving the economics of material discovery.
7

Process/Structure/Property Relationships of Semi-Crystalline Polymers in Material Extrusion Additive Manufacturing

Lin, Yifeng 14 March 2024 (has links)
Material Extrusion additive manufacturing (MEX) represents the most widely implemented form of additive manufacturing due to its high performance-cost ratio and robustness. Being an extrusion process in its essence, this process enables the free form fabrication of a wide range of thermoplastic materials. However, in most typical MEX processes, only amorphous polymers are being used as feedstock material owing to their smaller dimensional shrinkage during cooling and well-stablished process/structure/property (P/S/P) relationship. Semi-crystalline polymers, with their crystalline nature, possess unique properties such as enhanced mechanical properties and improved chemical resistance. However, due to the inherent processing challenges in MEX of semi-crystalline polymers, the P/S/P relationships are much less established, thus limits the application of semi-crystalline polymers in MEX. The overall aim of this thesis is to advance the understanding of P/S/P relationship of semi-crystalline polymers in MEX. This is accomplished through both experimental and simulation-based research. With a typical commodity semi-crystalline polymer, Poly (ethylene terephthalate) (PET), selected as the benchmark material. First, we experimentally explored the MEX printing of both neat and glass fiber (GF) reinforced recycled PET (rPET). Excellent MEX printability were shown for both neat and composite materials, with GF reinforced parts showing a significant improved mechanical property. Notably, a gradient of crystallinity induced by a different toolpathing time was highlighted. In the second project, to further investigate the impact of MEX parameter on crystallinity and mechanical properties, a series of benchmark parts were printed with neat PET and analyzed. The effect of part design and MEX parameter on thermal history during printing was revealed though a comparative analysis of IR thermography. Subsequent Raman spectroscopy and mechanical test indicated that crystallinity developed during the MEX process can adversely affects the interlayer adhesion. In the third project, a 3D heat transfer model was developed to simulate and understand the thermal history of MEX feedstock material during printing, this model is then thoroughly validated against the experimental IR thermography data. While good prediction accuracy was shown for some scenarios, the research identified and discussed several unreported challenges that significantly affect the model's prediction performance in certain conditions. In the fourth project, we employed a non-isothermal crystallization model to directly predict the development of crystallinity based on given temperature profiles, whether monitored experimentally or predicted by the heat transfer model. The research documented notable discrepancies between the model's predictions and actual crystallinity measurements, and the potential source of the error was addressed. In summary, this thesis explored the MEX printing of semi-crystalline polymer and its fiber reinforced composite. The influence of MEX parameters and part designs on the printed part's thermal history, crystallinity and mechanical performance was then thoroughly investigated. A heat transfer model and a non-isothermal crystallization model were constructed and employed. With rigorous validation against experimental data, previously unreported challenges in MEX thermal and crystallization modeling was highlighted. Overall, this thesis deepens the understanding of current semi-crystalline polymer's P/S/P relationship in MEX, and offers insights for the optimization and future research in the field of both experiment and simulation of MEX. / Doctor of Philosophy / Material extrusion additive manufacturing (MEX), also known as fused filament fabrication (FFF), is a popular form of 3D printing known for its cost-effectiveness and versatility in creating objects from plastic materials. Traditionally, MEX utilizes amorphous polymers because they are less prone to shrinkage and thus easier to print. However, semi-crystalline polymers, offer enhanced strength and chemicals resistance, yet they pose significant challenges in printing due to a limited understanding of their process/structure/property (P/S/P) relationships in MEX. This research aims to improve our understanding of P/S/P relationships of semi-crystalline polymers in MEX. The study utilizes a typical semi-crystalline polymer, Poly (ethylene terephthalate) (PET), as the benchmark material. The study begins with the exploration of the MEX printing of recycled PET (rPET) and its glass fiber composite, finding that with appropriate MEX parameters, both feedstocks are highly printable, and the incorporation of glass fibers substantially increased the strength of the printed parts. Subsequently, a comprehensive investigation regarding the intricate relationship between crystallinity development, mechanical properties, and the MEX printing process is conducted. Our research revealed that the MEX process and the design of the part both considerably affect the crystallinity of the final part, thereby influencing its mechanical properties. In the third chapter, a 3D heat transfer model is constructed to better understand and predict the temperature evolution of materials during MEX printing. Most importantly, the modeling results are rigorously validated against experimental data, showing promising results. However, it also reveals challenges in precisely predicting the temperature of parts under certain conditions. The research then evaluates the applicability of Nakamura non-isothermal crystallization model for MEX printing scenarios. It is found that this model underestimates crystallinity in MEX, primarily because it does not account for shear-induced crystallization, a critical factor in the process. This finding underscores the necessity for more advanced models that can effectively capture the complex dynamics of MEX. In summary, this dissertation significantly enhances our understanding of the behavior of semi-crystalline polymers in MEX printing. It sheds light on the complex relationship between the printing process, the structure of the material, and the final properties of the printed object. This work not only advances our knowledge in 3D printing but also paves the way for more sophisticated modeling approaches, optimizing the MEX process and expanding its potential applications.
8

Enhancing the Capabilities of Large-Format Additive Manufacturing Through Robotic Deposition and Novel Processes

Woods, Benjamin Samuel 12 June 2020 (has links)
The overall goal of this research work is to enhance the capabilities of large-format, polymer material extrusion, additive manufacturing (AM) systems. Specifically, the aims of this research are to (1) Construct, and develop a robust workflow for, a large-format, robotic, AM system; (2) Develop an algorithm for determining and relaying proper rotation commands for 5 degree of freedom (DoF) multi-axis deposition; and (3) Create a method for printing a removable support material in large-format AM. The development and systems-integration of a large-format, pellet-fed, polymer, material extrusion (ME), AM system that leverages an industrial robotic arm is presented. The robotic arm is used instead of the conventional gantry motion stage due to its multi-axis printing ability, ease of tool changes for multi-material deposition and/or subtraction, and relatively small machine footprint. A novel workflow is presented as a method to control the robotic arm for layer-wise fabrication of parts, and several machine modifications and workflow enhancements are presented to extend the multi-axis manufacturing capabilities of the robot. This workflow utilizes existing AM slicers to simplify the motion path planning for the robotic arm, as well as allowing the workflow to not be restricted to a single robotic deposition system. To enable multi-axis deposition, a method for generating tool orientations and resulting deposition toolpaths from a geometry's STL file was developed for 5-DoF conformal printing and validated via simulation using several different multi-DOF robotic arm platforms. Furthermore, this research proposes a novel method of depositing a secondary sacrificial support material was created for large-format AM to enable the fabrication of complex geometries with overhanging features. This method employs a simple tool change to deposit a secondary, water-soluble polymer at the interfaces between the part and supporting structures. In addition, a means to separate support material into smaller sections to extend the range of geometries able to be manufactured via large-format AM is presented. The resultant method was used to manufacture a geometry that would traditionally be considered unprintable on conventional large-format AM systems. / Master of Science / Additive manufacturing (AM), also known as 3D printing, is a method of manufacturing objects in a layer-by-layer technique. Large-format AM is typically defined as an AM system that can create an object larger than 1 m3. There are only a few manufacturers in the world of these systems, and all currently are built on gantry-based motion stages that only allow movement of the printer in three principal axes (X, Y, Z). The primary goal of this thesis is to construct a large-format AM system that uses a robotic arm to enable printing in any direction or orientation. The use of an industrial robotic arm enables printing in multiple planes, which can be used to print structures without support structures, print onto curved surfaces, and to purt with curved layers which produces a smoother external part surface. The design of the large-format AM system was validated through successful printing of objects as large as 1.0x0.5x1.2 m, simultaneous printing of a sacrificial support material to enable overhanging features, and through completing multi-axis printing. To enable multi-axis printing, an algorithm was developed to determine the proper toolpath location and relative orientation to the part surface. Using a part's STL file as input, the algorithm identifies the normal vector at each movement command, which is then used to calculate the required tool orientation. The tool orientations are then assembled with the movement commands to complete the multi-axis toolpath for the robot to perform. Finally, this research presents a method of using a second printing tool to deposit a secondary, water-soluble material to act as supporting structures for overhanging and bridging part features. While typical 3D printers can generally print sacrificial material for supporting overhangs, large-format printers produce layers up to 25 mm wide, rendering any support material impossible to remove without post-process machining. This limits the range of geometries able to be printed to just those with no steep overhangs, or those where the support material is easily reachable by a tool for removal. The solution presented in this work enables the large scale AM processes to create complex geometries.
9

Material Extrusion Additive Manufacturing of Binder-Coated Zirconia: Process, Comprehensive Characterizations, and Applications

Huang, Rui 05 May 2022 (has links)
No description available.
10

Fresh Mix Properties and Flexural Analysis with Digital Image Correlation of Additively Manufactured Cementitious Materials

Jenkins, Morgan Christen 22 January 2020 (has links)
Recently, additive manufacturing (AM), or "3D printing," is expanding into civil infrastructure applications, particularly cementitious materials. To ensure the safety, health, and welfare of the public, quality assurance and quality control (QA/QC) methods via standardized testing procedures are of the upmost importance. However, QA/QC methods for these applications have yet to be established. This thesis aims to implement existing ASTM standards to characterize additive manufactured cementitious composites and to gather better information on how to tackle the challenges that are inherent when printing with cementitious materials. In this work, fresh mix properties and hardened concrete properties were investigated using current ASTM standards as a starting point for applying or adapting them for AM applications. Specifically, this project applied existing ASTM standards for fresh mix mortars to measure setting time, flow, and early compressive strength as qualitative indicators of printability, pumpability, and buildability. The fresh mix properties were investigated for 12 different mortar mixes to demonstrate the effect that moisture content, absorption, and sand type can have on these fresh mix properties. The results for setting time and compressive strength demonstrated that there was less variability in the properties when the moisture condition of the aggregate was measured and accounted. Flow was shown to be strongly influenced by the sand type. Additively manufactured mortars were used to print a box in a layer-by-layer process. To evaluate the effect of layering on the flexural strength, three-point bending tests were implemented using four different loading orientations to explore the anisotropic mechanical properties. The observed anisotropic behavior was corroborated with stereo-digital image correlation data showing the stress-strain and load-deflection relationships. Two orientations (A and B) demonstrated brittle behavior while the other two orientations (C and D) experienced quasi-brittle behavior. In addition, setting a minimum unit weight of 132 pcf enabled an analysis of the effect that defects had on the mechanical performance: specimens greater than 132 pcf demonstrated greater and less variable strengths than the specimens less than 132 pcf. The discussion of how defects impacted performance of the different orientations can be valuable when determining how to effectively model, design, and inspect 3D printed structures in the future. The findings of this thesis confirm that existing ASTM standards for mortars can be modified and applied to AM cementitious composites for QA/QC. It is recommended that mixtures used in 3D printing of cementitious composites should design and accommodate the moisture condition of the aggregate to optimize the predictability of the fresh and early-age properties. For the hardened properties, it is recommended that testing procedures such as flexural testing account for anisotropic behavior. Furthermore, for implementation of 3D printed concrete structures, it is highly recommended that design is a function of loading orientation due to the anisotropic properties of the composite. / Master of Science / Recently, additive manufacturing (AM), or "3D printing," is expanding into civil infrastructure applications, specifically cementitious materials such as mortar and concrete. Understanding and predicting the behavior of the materials when using this new technique is vital for quality assurance and quality control (QA/QC). However, standard test methods have yet to be established for this new construction technique. This thesis aims to use existing testing standards to characterize AM cementitious composites and to gather better information on how to tackle the challenges of printing with these materials. In this work, properties before and after the materials hardened were studied by adapting current testing standards. Specifically, this project applied existing testing standards for fresh mix mortars to measure setting time, flow, and early compressive strength. These properties can serve as indicators of specific printing requirements. The fresh mix properties were studied for 12 different mortar mixes to show the effect of moisture content, absorption, and sand type. The results suggest that there was less variability in the properties when the moisture condition and type of the aggregate was accounted. The fresh mix materials were printed in a layer-by-layer process and then hardened in place. The effects of the layers were explored by performing flexure tests using four orientations with respect to how the load was applied to the layers. The observed difference in behavior for the different orientations was supported by digital image correlation data. In addition, an analysis of the effect defects had on the performance was included. Understanding how defects impacted performance can be valuable for effectively designing 3D printed structures in the future. The results of this thesis confirm that existing testing standards for mortars can be adapted and applied to AM cementitious materials for QA/QC. It is recommended that mixtures used in 3D printing of cementitious materials should account for the moisture condition of the aggregate to improve the predictability of the fresh and early-age properties. For the hardened properties, it is recommended that the design is a function of loading orientation due to the difference in behavior for the different orientations of the material.

Page generated in 0.1053 seconds