Cette thèse étudie la distorsion de probabilité dans le jugement clinique afin de comparer le jugement des médecins à des modèles statistiques. Nous supposons que les médecins forment leur jugement clinique en intégrant une composante analytique et une composante intuitive. Dans ce cadre, les médecins peuvent souffrir de plusieurs biais dans la façon dont ils évaluent et intègrent les deux composantes. Cette thèse rassemble les résultats obtenus sur le terrain et en laboratoire. À partir de données médicales, nous avons constaté que les médecins n'étaient pas aussi bons que les modèles statistiques à intégrer des évidences médicales. Ils surestimaient les petites probabilités que le patient soit malade et sous-estimaient les probabilités élevées. Nous avons constaté que leur jugement biaisé pourrait entraîner un sur-traitement. Comment améliorer leur jugement? Premièrement, nous avons envisagé de remplacer le jugement du médecin par la probabilité de notre modèle statistique. Pour améliorer la décision, il était nécessaire d'élaborer un score statistique qui combine le modèle analytique, la composante intuitive du médecin et sa déviation observée par rapport à la décision attendue. Deuxièmement, nous avons testé en laboratoire des facteurs qui peuvent influencer le traitement de l'information. Nous avons trouvé que la capacité des participants à apprendre la valeur de la composante analytique, sans feedback externe, dépend de la qualité de leur composante intuitive et de leur mémoire de travail. Nous avons aussi trouvé que la capacité des participants à intégrer les deux composantes dépend de leur mémoire de travail, mais pas de leur évaluation de la composante intuitive. / This thesis studies probability distortion in clinical judgment to compare physicians’ judgment with statistical models. We considered that physicians form their clinical judgment by integrating an analytical component and an intuitive component. We documented that physicians may suffer from several biases in the way they evaluate and integrate the two components. This dissertation gathers findings from the field and the lab. With actual medical data practice, we found that physicians were not as good as the statistical models at integrating consistently medical evidence. They overestimated small probabilities that the patient had the disease and under estimated large probabilities. We found that their biased probability judgment might cause unnecessary health care treatment. How then can we improve physician judgment? First, we considered to replace physician judgment by the probability generated from our statistical model. To actually improve decision it was necessary to develop a statistical score that combines the analytical model, the intuitive component of the physician and his observed deviation from the expected decision. Second, we tested in the lab factors that may affect information processing. We found that participants’ ability to learn about the value of the analytical component, without external feedback, depends on the quality of their intuitive component and their working memory. We also found that participants’ ability to integrate both components together depends on their working memory but not their evaluation of the intuitive component.
Identifer | oai:union.ndltd.org:theses.fr/2017PA01E034 |
Date | 21 December 2017 |
Creators | Hainguerlot, Marine |
Contributors | Paris 1, Vergnaud, Jean-Christophe, Roger de Gardelle, Vincent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds