Escoamentos sobre superfícies côncovas estão sujeitos à instabilidade centrífuga, dando origem a vórtices longitudinais, conhecidos como vórtices de Görtler. Esses vórtices são responsáveis por gerar distorções fortes nos perfis de velocidade. Como os vórtices são contra-rotativos, duas regiões surgem entre os mesmos: uma região de upwash e uma região de downwash. Na região de upwash o fluido próximo à parede é jogado para longe da mesma. Na região de downwash acontece o contrário, o fluido que se desloca a uma velocidade maior é jogado em direção à parede. Os vórtices se amplificam inicialmente de forma linear. À jusante na região não linear de desenvolvimento dos vórtices, a amplitude dos mesmos já é elevada, e há a formação de uma estrutura do tipo cogumelo com a distribuição da componente de velocidade na direção principal do escoamento . Essa nova distribuição de velocidade é tridimensional e difere em muito da camada limite obtida com a solução das equações de Blasius. Levando-se em consideração a camada limite térmica, já foi observado que, na média, há um aumento de transferência de calor na direção da parede. No presente trabalho, é verificado numericamente a transferência de calor na presença de vórtices de Görtler. Para tal, foi desenvolvido e implementado um código de simulação numérica direta espacial (DNS - do inglês Direct Numerical Simulation). Os resultados deste trabalho mostram a intensificação da transferência de calor através dos vórtices de Görtler, tanto no regime não-linear como na instabilidade secundária / Flows over concave surfaces are subject to centrifugal instability. It gives rise to stramwise vortices known as Görtler vortices. These vortices are responsible for generating strong distortions in the velocity profiles. As the vortices are counterrotating, two regions arise between them: a region of uowash and a region of downwash. In the upwash region, the fluid near the wall is convected away from it. In the downwash region the opposite happens, the fluid moving at a faster speed is moved towards the wall. The vortices initially amplify linearly in the downstream. When their amplitude is already high, in the non-linear development region, a mushroom-type structure, with the velocity distribution in the main flow direction, is formed. This new three-dimensional velocity distribution is different from the boundary layer obtained with the solution of Blasius equations. Taking into account a thermal boundary layer, on average, an increase in the heat transfer in the wall direction has been observed. In the present work, it is verified numerically the heat transfer in the presence of Görtler vortices. A simulation code was developed and implemanted usin Direct Numerical Simulation (DNS). The results of this work show the intensification of heat transfer through the Görtler vortices both in the non-linear regime and in the secondary instability
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-23092014-090040 |
Date | 07 July 2014 |
Creators | Malatesta, Vinicius |
Contributors | Souza, Leandro Franco de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0014 seconds