Return to search

Etude du trafic membranaire vésiculaire et non-vésiculaire chez la levure / Study of the vesicular and non-vesicular membrane traffic to the yeast

Les cellules eucaryotes sont caractérisées par le cloisonnement des organelles par des membranes. La communication entre les différents compartiments cellulaires est assurée par deux voies de transport : le transport vésiculaire et transport non-vésiculaire. Le transport vésiculaire permet à la fois le trafic des protéines et des lipides d'un compartiment à un autre, alors que le transport non-vésiculaire permet uniquement le trafic des lipides. En effet, les lipides jouent un rôle essentiel dans l'organisation cellulaire. Au cours de ma thèse, je me suis intéressé au rôle des lipides dans le trafic intracellulaire, en utilisant la levure comme organisme modèle. Dans une première partie de ma thèse, j'ai étudié les hélices amphipathiques qui permettent le ciblage des protéines vers des compartiments cellulaires spécifiques. Dans une étude précédente, réalisé au laboratoire a montré que ces hélices amphipathiques interagissaient directement avec les lipides membranaires, ce qui permet un adressage spécifique des protéines en fonction des environnements lipidiques dans la cellule. Deux hélices amphipatiques ont fait l’objet de cette étude : le motif ALPS qui cible les vésicules de la voie sécrétoire précoce, et alpha-synucléine qui reconnaît et fixe les vésicules du compartiment trans-Golgi-membrane plasmique. Dans cette première partie de la thèse j’ai cherché à identifier des motifs similaires à celui d’alpha-synucléine dans les protéines de levure, et de déterminer leurs rôles dans la cellule. Dans une seconde partie de ma thèse, en collaboration avec le laboratoire du Dr Thierry Galli, j'ai étudié de nouveaux composants impliqués dans le métabolisme lipidique aux sites de contact entre le réticulum endoplasmique et la membrane plasmique. Les sites de contact membranaires sont des régions de proches appositions (de l'ordre de 10 à 30 nm) entre deux membranes, généralement entre la membrane du réticulum endoplasmique (RE) et une autre organelle. Ce sont principalement des sites de transfert des lipides et d'ions. Maja Petkovic dans le laboratoire de Thierry Galli a fait la découverte que la protéine SNARE du RE, Sec22, interagit avec une syntaxine (Stx1) de la membrane plasmique dans les neurones, ce qui permet un nouveau mécanisme de contact entre ces deux membranes. J’ai donc essayé de voir si ce mécanisme est conservé chez la levure. Les résultats que j'ai obtenus ont confirmé que la levure Sec22 est capable d'interagir avec une protéine SNARE SSO1 localisée à la membrane plasmatique et homologue de Stx1. J'ai trouvé par co-immunoprecipitation que Sec22 et SSO1 deux interagissent avec les protéines de transfert des lipides localisées aux sites de contact. L'utilisation d'une sonde spécifique au Phosphatidylinositol-4 phosphate (PI4P), nous a permis de montrer que Sec22 est impliquée dans la régulation du niveau de PI4P à la membrane plasmique. Pour disséquer les deux fonctions de Sec22, dans la voie sécrétoire et aux sites de contact, nous avons utilisé l'approche des suppresseurs multicopies dans la levure. Parmi les suppresseurs identifiés, nous avons trouvé le Sfh1, une protéine qui a un rôle potentiel dans le transfert des lipides. Ces résultats confirment bien ceux obtenus par l’équipe de Thierry Galli, montrant que Sec22 a un nouveau rôle aux sites de contact entre le RE et la membrane plasmique et suggèrent que ce complexe SNARE pourrait être impliqué dans transfert de lipides chez la levure. / Eukaryotic cells are characterized by their internal membrane compartmentalization, with the various specialized organelles of the cell bounded by lipid membranes. Communication between different cellular compartments occurs via two transport pathways: vesicular transport and non-vesicular transport. Vesicular transport carries both proteins and lipids from one compartment to another in cells, whereas non-vesicular transport carries only lipids. An emerging idea is the important role that lipids play in cellular organization. Lipid binding amphipathic helices such as the ALPS (amphipathic lipid packing sensor) motif are targeted to membranes of a specific lipid composition, and hence act to transfer information encoded in membrane lipids to the vesicle trafficking machinery. The lipid composition of the membranes of different organelles is therefore of great importance. One mechanism that cells use to maintain the distinct lipid compositions of organelles is lipid transport, which occurs preferentially at membrane contact sites (MCS). MCS are regions of close appositions, on the order of 10 to 30 nm, between two membranes, generally between the membrane of the endoplasmic reticulum (ER) and another organelle. In my thesis, I addressed two aspects of how lipids and their transport function in intracellular trafficking, using yeast as a model system. First, I studied amphipathic motifs that mediate targeting of proteins to specific compartments in cells. Lipid binding amphipathic helices were shown in a previous study in the laboratory to mediate specific targeting to distinct lipid environments via direct protein-lipid interactions, both in vitro and in cells. One of these, the ALPS motif, targets vesicles of the early secretory pathway. The other, alpha-synuclein, targets vesicles travelling between the late Golgi, the plasma membrane and endosomes. I studied new potential alpha-synuclein-like motifs in yeast proteins, and their roles in cells. In a second project, in collaboration with the laboratory of Dr. Thierry Galli, I studied new compenents involved in lipid metabolism at contact sites between the endoplasmic reticulum and the plasma membrane. Maja Petkovic in the laboratory of Thierry Galli made the important discovery that the ER-localized SNARE protein Sec22 interacts with a plasma membrane syntaxin in neurons, thus providing a novel mechanism for mediating close contact between these two membranes. I addressed the question of whether this mechanism is conserved in yeast. The results I obtained confirmed that yeast Sec22 is able to interact with a SNARE protein localized to the plasma membrane, Sso1. I found by co-immunoprecitation that Sec22 and Sso1 both interact with lipid transfer proteins localized to ER-plasma membrane contact sites. Using a specific probe for phosphatidylinositol-4 phosphate (PI4P), we showed that Sec22 was involved in regulating the level of PI4P at the plasma membrane. These results extend to yeast those obtained by Maja Petkovic, Thierry Galli and colleauges showing that Sec22 has a novel role at ER-plasma membrane contact sites, and suggest that this SNARE complex might be implicated in lipid transfer at these sites in yeast.

Identiferoai:union.ndltd.org:theses.fr/2013PA112348
Date16 December 2013
CreatorsJemaiel, Aymen
ContributorsParis 11, Jackson, Catherine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0022 seconds