Return to search

Modèle de Littelmann pour cristaux géométriques, fonctions de Whittaker sur des groupes de Lie et mouvement brownien.

De façon générale, cette thèse s'intéresse aux liens entre théorie des représentations et probabilités. Elle se subdivise en principalement trois parties. Dans un premier volet plutôt algébrique, nous construisons un modèle de chemins pour les cristaux géométriques de Berenstein et Kazhdan, pour un groupe de Lie complexe semi-simple. Il s'agira pour l'essentiel de décrire la structure algébrique, ses morphismes naturels et ses paramétrisations. La théorie de la totale positivité y jouera un role particulièrement important. Ensuite, nous avons choisi d'anticiper sur les résultats probabilistes et d'exhiber une mesure canonique sur les cristaux géométriques. Celle-ci utilise comme ingrédients le superpotentiel de variété drapeau, et une mesure invariante sous les actions cristallines. La mesure image par l'application poids joue le role de mesure de Duistermaat-Heckman. Sa transformée de Laplace définit les fonctions de Whittaker, fournissant une formule intégrale particulièrement intéressante pour tous les groupes de Lie. Il apparait alors clairement que les fonctions de Whittaker sont aux cristaux géométriques, ce que les caractères sont aux cristaux combinatoires classiques. La règle de Littlewood-Richardson est aussi exposée. Enfin nous présentons l'approche probabiliste permettant de trouver la mesure canonique. Elle repose sur l'idée fondamentale que la mesure de Wiener induira la bonne mesure sur les structures algébriques du modèle de chemins. Dans une dernière partie, nous démontrons comment notre modèle géométrique dégénère en le modèle de Littelmann continu classique, pour retrouver des résultats connus. Par exemple, la mesure canonique sur un cristal géométrique de plus haut poids dégénère en une mesure uniforme sur un polytope, et retrouve les paramétrisations des cristaux continus.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00782028
Date24 January 2013
CreatorsChhaibi, Reda
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds