Neste trabalho, estudamos a interação de íons com um conjunto quase-monocromático de ondas eletrostáticas de frequência na faixa das frequências híbridas inferiores, propagando-se perpendicularmente a um campo magnético uniforme. Consideramos que as fases das ondas são aleatoriamente distribuídas (ondas incoerentes), tratando o caso de ondas de fases coerentes (ondas coerentes) como um caso particular. Derivamos o Hamiltoniano adequado a esse sistema, e deduzimos as equações de movimento, cujas soluções são analisadas numericamente, mostrando a ocorrência de difusão estocástica no espaçoo de fase ângulo-ação, para amplitudes de onda suficientemente grandes. Também fazemos estimativas sobre a amplitude mínima (threshold) para o aparecimento de ilhas de primeira ordem no espaço de fase. Estimamos, também, o limiar para as ilhas de segunda ordem e de ordens maiores, bem como o limiar de estocasticidade. A análise mostra que para o caso de várias ondas o comportamento estocástico ocorre antes do limiar de estocasticidade comparado com o caso de uma onda. No caso de ondas coerentes, observa-se que o limiar de estocasticidade diminui com o aumento do número de ondas que comp˜oem o conjunto de ondas, proporcionalmente ao inverso da raiz quadrada deste número, portanto, tendendo a ser nulo no limite em que o número de ondas no pacote tende a infinito. No caso de ondas incoerentes, observa-se também uma diminuição do limiar de estocasticidade com o aumento do número de ondas, mas nesse caso, saturando com valor até um terço do valor do limiar de estocasticidade para o caso de uma onda. Observa-se também que o limite superior da região de estocasticidade no espaço de fase aumenta com o aumento do número de ondas. No caso de ondas coerentes, esse aumento é proporcional à raiz cúbica do número de ondas que compõem o conjunto de ondas. No caso de ondas incoerentes o limite superior da região de estocasticidade têm um aumento de até o dobro em relação ao caso de uma onda. A análise também mostra que o mecanismo da estocasticidade para o caso de várias ondas é diferente do mecanismo atuante no caso de uma onda. No caso de uma onda, a estocasticidade ocorre por superposição de ilhas de ordens maiores do que um, com o aumento da intensidade da onda. No caso de várias ondas, a presençaa de ondas de frequências próximas à frequência de ressonância causa pequenas perturbações na trajetória principal das partículas, causada pela onda central, espalhando-a pelo espaço de fase de forma mais eficiente que o mecanismo de estocasticidade para o caso de uma onda.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/3718 |
Date | January 2003 |
Creators | Tozawa, Lucio Minoru |
Contributors | Ziebell, Luiz Fernando |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds