Return to search

Análise de eventos em redes de distribuição por meio das transformadas Wavelet e S / Event analysis in distribution networks using Wavelet and S transform

O presente trabalho apresenta uma comparação de duas técnicas para a análise tempo - frequência em análise de qualidade de energia elétrica para sinais de tensão que contenham distúrbios individuais ou simultâneos. Dessa forma, o objetivo, desta dissertação, é encontrar uma ferramenta que forneça as características e parâmetros para a localização, identificação e classificação de tais distúrbios. O estudo consiste na análise do desempenho da Transformada Wavelet Discreta e da Transformada-S, principalmente, quando os sinais são analisados na presença de múltiplos distúrbios. Ambas as transformadas fornecem informação importante nos domínios do tempo e da frequência. No entanto, essas ferramentas não tem sido amplamente exploradas para análise de múltiplos distúrbios. Neste contexto, ambas as transformadas são testadas para conhecer seus desempenhos e suas capacidades de identificação e localização de eventos de qualidade de energia elétrica. Para finalizar, é projetado um sistema classificador baseado em arvore de decisão capaz de reconhecer quinze tipos de distúrbios diferentes. / This work presents a comparison of two methods for time-frequency analysis applied in Power Quality signals containing single or multiple disturbances. In this way, the aim of this work is to apply tools that supply the parameters and characteristics to identify, locate and classify Power Quality disturbances. For that, the proposed method analyzes the performance of the Wavelet and S transforms, mainly when the signals are with more than one disturbance type. Both mathematical tools supply important information on the time and frequency domain. However, these tools have not been thoroughly used to analyze multiple events locate Power Quality events. In this contest, both transforms are tested in order to assess their performance to identify and locate electrical power quality events. According to a decision tree classifier, fifteen types of single and combined power disturbances are well recognized.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-14052012-100658
Date02 April 2012
CreatorsGuido Gómez Peña
ContributorsRicardo Quadros Machado, Enes Gonçalves Marra, Vilma Alves de Oliveira
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds