Segmentação de objetos em imagens é um dos problemas mais fundamentais e desafiadores em processamento de imagem e visão computacional. O conhecimento de alto nível e específico do usuário é frequentemente requerido no processo de segmentação, devido à presença de fundos heterogêneos, objetos com bordas fracamente definidas, inomogeneidade de campo, ruído, artefatos, efeitos de volume parcial e seus efeitos conjuntos. Propriedades globais do objeto de interesse, tais como conexidade, restrições de forma e polaridade de borda, são conhecimentos prévios de alto nível úteis para a sua segmentação, permitindo a customização da segmentação para um objeto alvo. Nesse trabalho, apresentamos um novo método chamado Transformada Imagem-Floresta Orientada Conexa (COIFT, Connected Oriented Image Foresting Transform), que fornece soluções ótimas globais de acordo com uma medida de corte em grafo, incorporando a restrição de conexidade na Transformada Imagem-Floresta Orientada (OIFT, Oriented Image Foresting Transform), com o fim de garantir a geração de objetos conexos, bem como permitir o controle simultâneo da polaridade de borda. Enquanto o emprego de restrições de conexidade em outros arcabouços, tais como no algoritmo de corte-mínimo/fluxo-máximo (min-cut/max-flow), leva a um problema NP-difícil, a COIFT conserva o baixo custo computacional da OIFT. Experimentos mostram que a COIFT pode melhorar consideravelmente a segmentação de objetos com partes finas e alongadas, para o mesmo número de sementes em segmentação baseada em marcadores. / Object segmentation is one of the most fundamental and challenging problems in image processing and computer vision. The high-level and specific knowledge of the user is often required in the segmentation process, due to the presence of heterogeneous backgrounds, objects with poorly defined boundaries, field inhomogeneity, noise, artifacts, partial volume effects and their joint effects. Global properties of the object of interest, such as connectivity, shape constraints and boundary polarity, are useful high-level priors for its segmentation, allowing the customization of the segmentation for a given target object. In this work, we introduce a new method called Connected Oriented Image Foresting Transform (COIFT), which provides global optimal solutions according to a graph-cut measure in graphs, subject to the connectivity constraint in the Oriented Image Foresting Transform (OIFT), in order to ensure the generation of connected objects, as well as allowing the simultaneous control of the boundary polarity. While the use of connectivity constraints in other frameworks, such as in the min-cut/max-flow algorithm, leads to a NP-Hard problem, COIFT retains the low computational cost of OIFT. Experiments show that COIFT can considerably improve the segmentation of objects with thin and elongated parts, for the same number of seeds in segmentation based on markers.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-01102018-120427 |
Date | 10 August 2018 |
Creators | Mansilla, Lucy Alsina Choque |
Contributors | Miranda, Paulo Andre Vechiatto de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.003 seconds