Return to search

Modellierung von Metabolismus, Transkriptom und Zellentwicklung bei Arabidopsis, Listerien und anderen Organismen / Modeling of metabolism, transcriptome and cell development in Arabidopsis, Listeria and other organisms

Im gleichen Maße wie informatisches Wissen mehr und mehr in den wissenschaftlichen Alltag aller Lebenswissenschaften Einzug gehalten hat, hat sich der Schwerpunkt bioinformatischer Forschung in stärker mathematisch und informatisch-orientierte Themengebiete verschoben. Bioinformatik heute ist mehr als die computergestützte Verarbeitung großer Mengen an biologischen Daten, sondern hat einen entscheidenden Fokus auf der Modellierung komplexer biologischer Systeme. Zur Anwendung kommen hierbei insbesondere Theorien aus dem Bereich der Stochastik und Statistik, des maschinellen Lernens und der theoretischen Informatik. In der vorliegenden Dissertation beschreibe ich in Fallstudien die systematische Modellierung biologischer Systeme aus einem informatisch - mathematischen Standpunkt unter Anwendung von Verfahren aus den genannten Teilbereichen und auf unterschiedlichen Ebenen biologischer Abstraktion. Ausgehend von der Sequenzinformation über Transkriptom, Metabolom und deren regulatorischer Interaktion hin zur Modellierung von Populationseffekten werden hierbei aktuelle biologische Fragestellungen mit mathematisch - informatischen Modellen und einer Vielzahl experimenteller Daten kombiniert. Ein besonderer Augenmerk liegt dabei auf dem Vorgang der Modellierung und des Modellbegriffs als solchem im Rahmen moderner bioinformatischer Forschung. Im Detail umfassen die Projekte (mehrere Publikationen) die Entwicklung eines neuen Ansatzes zur Einbettung und Visualisierung von Multiplen Sequenz- und Sequenz-Strukturalignments, illustriert am Beispiel eines Hemagglutininalignments unterschiedlicher H5N1 Varianten, sowie die Modellierung des Transkriptoms von A. thaliana, bei welchem mit Hilfe einer kernelisierten nicht-parametrischen Metaanalyse neue, an der Infektionsabwehr beteiligten, Gene ausfindig gemacht werden konnten. Desweiteren ist uns mit Hilfe unserer Software YANAsquare eine detaillierte Untersuchung des Metabolismus von L. monocytogenes unter Aktivierung des Transkriptionsfaktors prfA gelungen, dessen Vorhersagen durch experimentelle 13C Isotopologstudien belegt werden konnten. In einem Anschlußprojekt war der Zusammenhang zwischen Regulation des Metabolismus durch Regulation der Genexpression und der Fluxverteilung des metabolischen Steady- State-Netzwerks das Ziel. Die Modellierung eines komplexen organismischen Phänotyps, der Zellgrößenentwicklung der Diatomee Pseudo-nitzschia delicatissima, schließt die Untersuchungen ab. / In the same way that informatical knowledge has made its way into almost all areas of research in the Life Sciences, the focus of bioinformatical research has shifted towards topics originating more in the fields of mathematics and theoretical computer science. Bioinformatics today is more than the computer-driven processing of huge amounts of biological data, but it has a special focus on the emphmodelling of complex biological systems. Of special importance hereby are theories from stochastics and statistics, from the field of machine learning and theoretical computer science. In the following dissertation, I describe the systematic modelling of biological systems from an informatical-mathematical point of view in a case studies approach, applying methods from the aforementioned areas of research and on different levels of biological abstraction. Beginning with the sequence information itself, followed by the transcriptome, metabolome and the interaction of both and finally population effects I show how current biological questions can be tackled with mathematical models and combined with a variety of different experimental datasets. A special focus lies hereby on the procedure of modelling and the concept and notion of a model as such in the framework of bioinformatical research. In more detail, the projects contained the development of a new approach for embedding and visualizing Multiple Sequence and Structure Alignments, which was illustrated using a hemagglutinin alignment from different H5N1 variants as an example. Furthermore we investigated the A. thaliana transcriptome by means of a kernelized non-parametric meta-analysis, thus being able to annotate several new genes as pathogen-defense related. Another major part of this work was the modelling of the metabolic network of L. monocytogenes under activation of the transcription factor prfA, establishing predictions which were later verified by experimental 13C isotopologue studies. Following this project we investigated the relationship between the regulation of metabolism by changes in the cellular genexpression patterns and the flux distributions of the metabolic steady-state network. Modelling of a complex organismal property, the cell size development of the planktonic diatom Pseudo-nitzschia delicatissima concludes this work.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2366
Date January 2008
CreatorsSchwarz, Roland
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds