In modern power transmission systems, the double-circuit line structure is increasingly adopted. However, due to the mutual coupling between the parallel lines it is quite challenging to design accurate fault location algorithms. Moreover, the widely used series compensator and its protective device introduce harmonics and non-linearities to the transmission lines, which make fault location more difficult. To tackle these problems, this dissertation is committed to developing advanced fault location methods for double-circuit and series-compensated transmission lines.
Algorithms utilizing sparse measurements for pinpointing the location of short-circuit faults on double-circuit lines are proposed. By decomposing the original network into three sequence networks, the bus impedance matrix for each network with the addition of the fictitious fault bus can be formulated. It is a function of the unknown fault location. With the augmented bus impedance matrices the sequence voltage change during the fault at any bus can be expressed in terms of the corresponding sequence fault current and the transfer impedance between the fault bus and the measured bus. Resorting to VCR the superimposed sequence current at any branch can be expressed with respect to the pertaining sequence fault current and transfer impedance terms. Obeying boundary conditions of different fault types, four different classes of fault location algorithms utilizing either voltage phasors, or phase voltage magnitudes, or current phasors, or phase current magnitudes are derived. The distinguishing charactristic of the proposed method is that the data measurements need not stem from the faulted section itself. Quite satisfactory results have been obtained using EMTP simulation studies.
A fault location algorithm for series-compensated transmission lines that employs two-terminal unsynchronized voltage and current measurements has been implemented. For the distinct cases that the fault occurs either on the left or on the right side of the series compensator, two subroutines are developed. In additon, the procedure to identify the correct fault location estimate is described in this work. Simulation studies carried out with Matlab SimPowerSystems show that the fault location results are very accurate.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1068 |
Date | 01 January 2010 |
Creators | Kang, Ning |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Doctoral Dissertations |
Page generated in 0.0022 seconds