The purpose of the thesis is to analyze the properties of acoustic sound field in the Sizihwan Bay Marine Test Field (SBMTF), and to conduct geoacoustic inversion using the measured data. Two experiments were carried out during February, 2009, and March, 2010. The source was UW350, and the receivers were ITC 6050 hydrophones. The transmitted frequencies lie between 350 Hz and 1250 Hz. On the analysis of acoustic propagation, the study calls for the application of OASES for the analysis of transmission loss and effects of range dependency. Moreover, the uncertainty analysis due to environmental factors was carried out based upon probabilistic approach. For the inversion analysis, the sensitivity of each environmental parameter was first analyzed, and those parameters with high sensitivity were chosen for inversion. Inversion was conducted by the application of SAGA. The results have shown that, due to the fact that the SBMTF is an very shallow water environment with water depth less than 30 m, the acoustic sound field is strongly affected by the boundaries. From the uncertainty analysis, it shows that the transmission loss has high degree of uncertainty resulting from seabed property due to its lack of accurate measurement. The inversion results for water depth and seabed sound speed were obtained, and compared with the measured data. This research calls for experimental design, data processing, software application, and result analysis, offering an overall understanding of the properties of SBMTF that is valuable for future study.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0831110-132908 |
Date | 31 August 2010 |
Creators | Chang, Shun-Chieh |
Contributors | Gee-Pinn TOO, Jin-Yuan Liu, Chen-Fen Huang, Peter Gerstoft |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0831110-132908 |
Rights | restricted, Copyright information available at source archive |
Page generated in 0.0018 seconds