Return to search

Solutions Of The Equations Of Change By The Averaging Technique

Area averaging is one of the techniques used to solve problems encountered in the transport of momentum, heat, and mass. The application of this technique simplifies the mathematical solution of the problem. However, it necessitates expressing the local value of the dependent variable and/or its derivative(s) on the system boundaries in terms of the averaged variable. In this study, these expressions are obtained by the two-point Hermite expansion and this approximate method is applied to some specific problems, such as, unsteady flow in a concentric annulus, unequal cooling of a long slab, unsteady conduction in a cylindrical rod with internal heat generation, diffusion of a solute into a slab from limited volume of a well-mixed solution, convective mass transport between two parallel plates with a wall reaction, convective mass transport in a cylindrical tube with a wall reaction, and unsteady conduction in a two -layer composite slab. Comparison of the analytical and approximate solutions is shown to be in good agreement for a wide range of dimensionless parameters characterizing each system.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12609525/index.pdf
Date01 May 2008
CreatorsDalgic, Meric
ContributorsTosun, Ismail
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0023 seconds